Introduction to Elasticity/Sample final 5

From Wikiversity
Jump to: navigation, search

Sample Final Exam Problem 5[edit]

Assuming that plane sections remain plane, it can be shown that the potential energy functional for a beam in bending is expressible as


  \Pi[y(x)] = \frac{1}{2}\int_0^L EI(y^{''})^2 - \int_0^L p~y~ dx +
   M_0~ y^{'}(0) - V_0~ y(0) - M_L~ y^{'}(L) + V_L~ y(L)

where x is the position along the length of the beam and y(x) is the beam's deflection curve.

Beam bending problem
  • (a) Find the Euler equation for the beam using the principle of minimum potential energy.
  • (b) Find the associated boundary conditions at x = 0 and x = L.

Solution:[edit]

Taking the first variation of the functional \Pi, we have


  \delta\Pi = \int_0^L EI~y^{''}\delta y^{''}~dx - \int_0^L p~\delta y~dx +
   M_0~ \delta y^{'}(0) - V_0~ \delta y(0) - M_L~ \delta y^{'}(L) + 
   V_L~ \delta y(L)

Integrating the first terms of the above expression by parts, we have,


  \delta\Pi = \left.(EI~y^{''}\delta y^{'})\right|_0^L 
   - \int_0^L (EI~y^{''})^{'}\delta y^{'}~dx 
   - \int_0^L p~\delta y~dx +
   M_0~ \delta y^{'}(0) - V_0~ \delta y(0) - M_L~ \delta y^{'}(L) + 
   V_L~ \delta y(L)

Integrating by parts again,


  \delta\Pi = \left.(EI~y^{''}\delta y^{'})\right|_0^L 
   - \left.(EI~y^{''})^{'}\delta y\right|_0^L 
   + \int_0^L (EI~y^{''})^{''}\delta y~dx 
   - \int_0^L p~\delta y~dx +
   M_0~ \delta y^{'}(0) - V_0~ \delta y(0) - M_L~ \delta y^{'}(L) + 
   V_L~ \delta y(L)

Expanding out,

\begin{align}
  \delta\Pi = & 
     EI~y^{''}(L)\delta y^{'}(L) - EI~y^{''}(0)\delta y^{'}(0)
   - (EI~y^{''})^{'}(L)\delta y(L) + (EI~y^{''})^{'}(0)\delta y(0) \\
   & + \int_0^L (EI~y^{''})^{''}\delta y~dx 
   - \int_0^L p~\delta y~dx +
   M_0~ \delta y^{'}(0) - V_0~ \delta y(0) - M_L~ \delta y^{'}(L) + 
   V_L~ \delta y(L)
\end{align}

Rearranging,

\begin{align}
  \delta\Pi = &\int_0^L \left[(EI~y^{''})^{''} - p\right]\delta y~dx 
   + \left[M_0 - EI~y^{''}(0)\right] \delta y^{'}(0) 
   + \left[EI~y^{''}(L)- M_L\right] \delta y^{'}(L) \\
   & + \left[(EI~y^{''})^{'}(0) - V_0\right]~ \delta y(0) 
   + \left[V_L - (EI~y^{''})^{'}(L)\right]~ \delta y(L)
\end{align}

Using the principle of minimum potential energy, for the functional \Pi to have a minimum, we must have \delta\Pi = 0. Therefore, we have

\begin{align}
  0 = &\int_0^L \left[(EI~y^{''})^{''} - p\right]\delta y~dx 
   + \left[M_0 - EI~y^{''}(0)\right] \delta y^{'}(0) 
   + \left[EI~y^{''}(L)- M_L\right] \delta y^{'}(L) \\
   & + \left[(EI~y^{''})^{'}(0) - V_0\right]~ \delta y(0) 
   + \left[V_L - (EI~y^{''})^{'}(L)\right]~ \delta y(L)
\end{align}

Since \delta y and \delta y^{'} are arbitrary, the Euler equation for this problem is


  {(EI~y^{''})^{''} - p = 0}

and the associated boundary conditions are


  {
  \text{at}~x = 0~~;~~ EI~y^{''} - M_0 = 0 ~~\text{and}~~
   (EI~y^{''})^{'} - V_0 = 0
   }

and


  {
  \text{at}~x = L~~;~~ EI~y^{''} - M_L = 0 ~~\text{and}~~
   (EI~y^{''})^{'} - V_L = 0
  }