Operator Input Forms
Characters that are not letters, letter-like forms, or structural elements are treated by Mathematica as operators. Mathematica has built-in rules for interpreting all operators. The functions to which these operators correspond may or may not, however, have built-in evaluation or other rules. Cases in which built-in meanings are by default defined are indicated by in the tables below.
Operators that construct two-dimensional boxes—all of which have names beginning with backslash—can only be used inside \(...\). The table below gives the interpretations of these operators within . "Input of Boxes" gives interpretations when no
is included.
exprandexpri | any expression |
symb | any symbol |
patt | any pattern object |
stringandstringi | ![]() |
filename | like string, but can include additional characters described below |
![]() | built-in meanings exist |
Objects used in the tables of operator input forms.
Operator Precedence
operator form | full form | grouping | ||||||||||
forms representing numbers (see Numbers) | ![]() | |||||||||||
forms representing symbols (see Symbol Names and Contexts) | ![]() | |||||||||||
forms representing character strings (see Character Strings) | ![]() | |||||||||||
| {{e11,e12,...},{e21,e22,...},...} | ![]() | ||||||||||
![]()
| Piecewise[{{e11,e12},{e21,e22},...}] | ![]() | ||||||||||
expr::string | MessageName[expr,"string"] | ![]() | ||||||||||
expr::string1::string2 | MessageName[expr,"string1","string2"] | ![]() | ||||||||||
forms containing ![]() | ![]() | |||||||||||
forms containing ![]() | ![]() | |||||||||||
forms containing ![]() | ![]() | |||||||||||
<<filename | Get["filename"] | ![]() | ||||||||||
![]() | Overscript[expr1,expr2] | ![]() | ||||||||||
expr1\&expr2 | Overscript[expr1,expr2] | e\&(e\&e) | ||||||||||
![]() | Underscript[expr1,expr2] | ![]() | ||||||||||
expr1\+expr2 | Underscript[expr1,expr2] | e\+(e\+e) | ||||||||||
![]() | Underoverscript[expr1,expr2,expr3] | |||||||||||
expr1\+expr2\%expr3 | Underoverscript[expr1,expr2,expr3] | |||||||||||
expr1\&expr2\%expr3 | Underoverscript[expr1,expr3,expr2] | |||||||||||
expr1expr2 | Subscript[expr1,expr2] | e(ee) | ||||||||||
expr1\_expr2 | Subscript[expr1,expr2] | e\_(e\_e) | ||||||||||
expr1\_expr2\%expr3 | Power[Subscript[expr1,expr2],expr3] | ![]() | ||||||||||
\!boxes | (interpreted version of boxes) | |||||||||||
expr1?expr2 | PatternTest[expr1,expr2] | ![]() | ||||||||||
expr1[expr2,...] | expr1[expr2,...] | (e[e])[e] | ![]() | |||||||||
expr1[[expr2,...]] | Part[expr1,expr2,...] | (e[[e]])[[e]] | ![]() | |||||||||
expr1![]() ![]() | Part[expr1,expr2,...] | (e![]() ![]() ![]() ![]() | ![]() | |||||||||
expr1![]() ![]() | Part[expr1,expr2,...] | (e![]() ![]() ![]() ![]() | ![]() | |||||||||
\*expr | (boxes constructed from expr) | |||||||||||
expr++ | Increment[expr] | ![]() | ||||||||||
expr-- | Decrement[expr] | ![]() | ||||||||||
++expr | PreIncrement[expr] | ![]() | ||||||||||
--expr | PreDecrement[expr] | ![]() | ||||||||||
expr1@expr2 | expr1[expr2] | e@(e@e) | ![]() | |||||||||
expr1 expr2 | (invisible application, input as ![]() ![]() | ![]() | ||||||||||
expr1[expr2] | ||||||||||||
expr1~expr2~expr3 | expr2[expr1,expr3] | (e~e~e)~e~e | ![]() | |||||||||
expr1/@expr2 | Map[expr1,expr2] | e/@(e/@e) | ![]() | |||||||||
expr1//@expr2 | MapAll[expr1,expr2] | e//@(e//@e) | ![]() | |||||||||
expr1@@expr2 | Apply[expr1,expr2] | e@@(e@@e) | ![]() | |||||||||
expr1@@@expr2 | Apply[expr1,expr2,{1}] | e@@@(e@@@e) | ![]() | |||||||||
expr! | Factorial[expr] | ![]() | ||||||||||
expr!! | Factorial2[expr] | ![]() | ||||||||||
expr* | Conjugate[expr] | ![]() | ||||||||||
expr![]() | Transpose[expr] | ![]() | ||||||||||
expr![]() | ConjugateTranspose[expr] | ![]() | ||||||||||
expr![]() | ConjugateTranspose[expr] | ![]() | ||||||||||
expr' | Derivative[1][expr] | ![]() | ||||||||||
expr''...' (n times) | Derivative[n][expr] | ![]() | ||||||||||
expr1<>expr2<>expr3 | StringJoin[expr1,expr2,expr3] | e<>e<>e | ![]() | |||||||||
expr1^expr2 | Power[expr1,expr2] | e^(e^e) | ![]() | |||||||||
expr1expr2 | Power[expr1,expr2] | e(ee) | ![]() | |||||||||
![]() | Power[Subscript[expr1,expr2],expr3] | ![]() | ||||||||||
expr1\^expr2\%expr3 | Power[Subscript[expr1,expr3],expr2] | ![]() | ||||||||||
vertical arrow and vector operators | ||||||||||||
![]() | Sqrt[expr] | ![]() | ![]() | |||||||||
\@ expr | Sqrt[expr] | \@(\@ e) | ![]() | |||||||||
\@ expr\%n | Power[expr,1/n] | ![]() | ||||||||||
![]() ![]() | Integrate[expr1,expr2] | ![]() ![]() ![]() ![]() | ![]() | |||||||||
![]() ![]() | Integrate[e3,{e4,e1,e2}] | ![]() ![]() ![]() ![]() | ![]() | |||||||||
other integration operators | ||||||||||||
![]() | D[expr2,expr1] | ![]() ![]() | ![]() | |||||||||
![]() | Del[expr] | ![]() ![]() | ||||||||||
![]() | DiscreteShift[expr2,expr1] | ![]() ![]() | ![]() | |||||||||
![]() | DiscreteRatio[expr2,expr1] | ![]() ![]() | ![]() | |||||||||
![]() | DifferenceDelta[expr2,expr1] | ![]() ![]() | ![]() | |||||||||
![]() | Square[expr] | ![]() ![]() | ||||||||||
expr1![]() ![]() | SmallCircle[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | CircleDot[expr1,expr2,expr3] | e ![]() ![]() | ||||||||||
expr1**expr2**expr3 | NonCommutativeMultiply[expr1,expr2,expr3] | e**e**e | ||||||||||
expr1![]() ![]() | Cross[expr1,expr2,expr3] | e![]() ![]() | ![]() | |||||||||
expr1.expr2.expr3 | Dot[expr1,expr2,expr3] | e.e.e | ![]() | |||||||||
-expr | Times[-1,expr] | ![]() | ||||||||||
+expr | expr | ![]() | ||||||||||
±expr | PlusMinus[expr] | |||||||||||
![]() | MinusPlus[expr] | |||||||||||
expr1/expr2 | expr1(expr2)^-1 | (e/e)/e | ![]() | |||||||||
expr1÷expr2 | Divide[expr1,expr2] | (e÷e)÷e | ![]() | |||||||||
expr1\/expr2 | Divide[expr1,expr2] | (e\/e)\/e | ![]() | |||||||||
expr1\expr2\expr3 | Backslash[expr1,expr2,expr3] | e\e\e | ||||||||||
expr1![]() ![]() | Diamond[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | Wedge[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | Vee[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | CircleTimes[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | CenterDot[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1 expr2 expr3 | Times[expr1,expr2,expr3] | e e e | ![]() | |||||||||
expr1*expr2*expr3 | Times[expr1,expr2,expr3] | e*e*e | ![]() | |||||||||
expr1×expr2×expr3 | Times[expr1,expr2,expr3] | e×e×e | ![]() | |||||||||
expr1![]() ![]() | Star[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
![]() | Product[e4,{e1,e2,e3}] | ![]() ![]() | ![]() | |||||||||
expr1![]() ![]() | VerticalTilde[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | Coproduct[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | Cap[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | Cup[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() ![]() | CirclePlus[expr1,expr2,expr3] | e![]() ![]() | ||||||||||
expr1![]() | CircleMinus[expr1,expr2] | (e ![]() ![]() | ||||||||||
![]() | Sum[e4,{e1,e2,e3}] | ![]() ![]() | ![]() | |||||||||
expr1+expr2+expr3 | Plus[expr1,expr2,expr3] | e+e+e | ![]() | |||||||||
expr1-expr2 | expr1+(-1expr2) | (e-e)-e | ![]() | |||||||||
expr1±expr2 | PlusMinus[expr1,expr2] | (e±e)±e | ||||||||||
expr1![]() | MinusPlus[expr1,expr2] | (e![]() ![]() | ||||||||||
expr1![]() | Intersection[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
other intersection operators | ||||||||||||
expr1![]() | Union[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
other union operators | ||||||||||||
i;;j;;k | Span[i,j,k] | e;;e;;e | ![]() | |||||||||
expr1==expr2 | Equal[expr1,expr2] | e==e==e | ![]() | |||||||||
expr1==expr2 | Equal[expr1,expr2] | e==e==e | ![]() | |||||||||
expr1![]() | Equal[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
expr1!= expr2 | Unequal[expr1,expr2] | e!=e!=e | ![]() | |||||||||
expr1!=expr2 | Unequal[expr1,expr2] | e!=e!=e | ![]() | |||||||||
other equality and similarity operators | ||||||||||||
expr1>expr2 | Greater[expr1,expr2] | e>e>e | ![]() | |||||||||
expr1>=expr2 | GreaterEqual[expr1,expr2] | e>=e>=e | ![]() | |||||||||
expr1≥expr2 | GreaterEqual[expr1,expr2] | e≥e≥e | ![]() | |||||||||
expr1![]() | GreaterEqual[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
expr1<expr2 | Less[expr1,expr2] | e<e<e | ![]() | |||||||||
expr1<=expr2 | LessEqual[expr1,expr2] | e<=e<=e | ![]() | |||||||||
expr1≤expr2 | LessEqual[expr1,expr2] | e≤e≤e | ![]() | |||||||||
expr1![]() | LessEqual[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
other ordering operators | ||||||||||||
expr1|expr2 | VerticalBar[expr1,expr2] | e|e|e | ||||||||||
expr1![]() | NotVerticalBar[expr1,expr2] | e![]() ![]() | ||||||||||
expr1![]() | DoubleVerticalBar[expr1,expr2] | e![]() ![]() | ||||||||||
expr1![]() | NotDoubleVerticalBar[expr1,expr2] | e![]() ![]() | ||||||||||
horizontal arrow and vector operators | ||||||||||||
diagonal arrow operators | ||||||||||||
expr1===expr2 | SameQ[expr1,expr2] | e===e===e | ![]() | |||||||||
expr1=!=expr2 | UnsameQ[expr1,expr2] | e=!=e=!=e | ![]() | |||||||||
expr1![]() | Element[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
expr1![]() | NotElement[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
expr1![]() | Subset[expr1,expr2] | e![]() ![]() | ||||||||||
expr1![]() | Superset[expr1,expr2] | e![]() ![]() | ||||||||||
other set relation operators | ||||||||||||
![]() | ForAll[expr1,expr2] | ![]() ![]() | ![]() | |||||||||
![]() | Exists[expr1,expr2] | ![]() ![]() | ![]() | |||||||||
![]() | NotExists[expr1,expr2] | ![]() ![]() | ||||||||||
!expr | Not[expr] | !(!e) | ![]() | |||||||||
¬expr | Not[expr] | ¬(¬e) | ![]() | |||||||||
expr1&&expr2&&expr3 | And[expr1,expr2,expr3] | e&&e&&e | ![]() | |||||||||
expr1![]() ![]() | And[expr1,expr2,expr3] | e![]() ![]() | ![]() | |||||||||
expr1![]() ![]() | Nand[expr1,expr2,expr3] | e![]() ![]() | ![]() | |||||||||
expr1![]() ![]() | Xor[expr1,expr2,expr3] | e![]() ![]() | ![]() | |||||||||
expr1![]() ![]() | Xnor[expr1,expr2,expr3] | e![]() ![]() | ![]() | |||||||||
expr1||expr2||expr3 | Or[expr1,expr2,expr3] | e||e||e | ![]() | |||||||||
expr1![]() ![]() | Or[expr1,expr2,expr3] | e![]() ![]() | ![]() | |||||||||
expr1![]() ![]() | Nor[expr1,expr2,expr3] | e![]() ![]() | ![]() | |||||||||
expr1![]() ![]() | Equivalent[expr1,expr2,expr3] | e![]() ![]() | ![]() | |||||||||
expr1![]() | Implies[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
expr1![]() | Implies[expr1,expr2] | e![]() ![]() | ![]() | |||||||||
expr1![]() | RightTee[expr1,expr2] | e![]() ![]() | ||||||||||
expr1![]() | DoubleRightTee[expr1,expr2] | e![]() ![]() | ||||||||||
expr1![]() | LeftTee[expr1,expr2] | (e![]() ![]() | ||||||||||
expr1![]() | DoubleLeftTee[expr1,expr2] | (e![]() ![]() | ||||||||||
expr1![]() | SuchThat[expr1,expr2] | e![]() ![]() | ||||||||||
expr.. | Repeated[expr] | ![]() | ||||||||||
expr... | RepeatedNull[expr] | ![]() | ||||||||||
expr1|expr2 | Alternatives[expr1,expr2] | e|e|e | ![]() | |||||||||
symb:expr | Pattern[symb,expr] | ![]() | ||||||||||
patt:expr | Optional[patt,expr] | ![]() | ||||||||||
expr1~~expr2~~expr3 | StringExpression[expr1,expr2,expr3] | e~~e~~e | ![]() | |||||||||
expr1/;expr2 | Condition[expr1,expr2] | (e/;e)/;e | ![]() | |||||||||
expr1->expr2 | Rule[expr1,expr2] | e->(e->e) | ![]() | |||||||||
expr1→expr2 | Rule[expr1,expr2] | e→(e→e) | ![]() | |||||||||
expr1:>expr2 | RuleDelayed[expr1,expr2] | e:>(e:>e) | ![]() | |||||||||
expr1⧴ expr2 | RuleDelayed[expr1,expr2] | e⧴(e⧴e) | ![]() | |||||||||
expr1/.expr2 | ReplaceAll[expr1,expr2] | (e/.e)/.e | ![]() | |||||||||
expr1//.expr2 | ReplaceRepeated[expr1,expr2] | (e//.e)//.e | ![]() | |||||||||
expr1+=expr2 | AddTo[expr1,expr2] | e+=(e+=e) | ![]() | |||||||||
expr1-=expr2 | SubtractFrom[expr1,expr2] | e-=(e-=e) | ![]() | |||||||||
expr1*=expr2 | TimesBy[expr1,expr2] | e*=(e*=e) | ![]() | |||||||||
expr1/=expr2 | DivideBy[expr1,expr2] | e/=(e/=e) | ![]() | |||||||||
expr& | Function[expr] | ![]() | ||||||||||
expr1:expr2 | Colon[expr1:expr2] | e:e:e | ||||||||||
expr1//expr2 | expr2[expr1] | (e//e)//e | ||||||||||
expr1![]() | VerticalSeparator[expr1,expr2] | e![]() ![]() | ||||||||||
expr1![]() | Therefore[expr1,expr2] | e![]() ![]() | ||||||||||
expr1![]() | Because[expr1,expr2] | (e![]() ![]() | ||||||||||
expr1=expr2 | Set[expr1,expr2] | e=(e=e) | ![]() | |||||||||
expr1:=expr2 | SetDelayed[expr1,expr2] | e:=(e:=e) | ![]() | |||||||||
expr1^=expr2 | UpSet[expr1,expr2] | e^=(e^=e) | ![]() | |||||||||
expr1^:=expr2 | UpSetDelayed[expr1,expr2] | e^:=(e^:=e) | ![]() | |||||||||
symb/:expr1=expr2 | TagSet[symb,expr1,expr2] | ![]() | ||||||||||
symb/:expr1:=expr2 | TagSetDelayed[symb,expr1,expr2] | ![]() | ||||||||||
expr=. | Unset[expr] | ![]() | ||||||||||
symb/:expr=. | TagUnset[symb,expr] | ![]() | ||||||||||
expr1![]() | Function[{expr1},expr2] | e![]() ![]() | ![]() | |||||||||
expr>>filename | Put[expr,"filename"] | ![]() | ||||||||||
expr>>>filename | PutAppend[expr,"filename"] | ![]() | ||||||||||
expr1;expr2;expr3 | CompoundExpression[expr1,expr2,expr3] | ![]() | ||||||||||
expr1;expr2; | CompoundExpression[expr1,expr2,Null] | ![]() | ||||||||||
expr1\`expr2 | FormBox[expr2,expr1] | e\`(e\`e) | ![]() |
Operator input forms, in order of decreasing precedence.
special input form | full form |
# | Slot[1] |
#n | Slot[n] |
## | SlotSequence[1] |
##n | SlotSequence[n] |
% | Out[ ] |
%% | Out[-2] |
%%...% (n times) | Out[-n] |
%n | Out[n] |
_ | Blank[ ] |
_expr | Blank[expr] |
__ | BlankSequence[ ] |
__expr | BlankSequence[expr] |
___ | BlankNullSequence[ ] |
___expr | BlankNullSequence[expr] |
_. | Optional[Blank[ ]] |
symb_ | Pattern[symb,Blank[ ]] |
symb_expr | Pattern[symb,Blank[expr]] |
symb__ | Pattern[symb,BlankSequence[ ]] |
symb__expr | Pattern[symb,BlankSequence[expr]] |
symb___ | Pattern[symb,BlankNullSequence[ ]] |
symb___expr | Pattern[symb,BlankNullSequence[expr]] |
symb_. | Optional[Pattern[symb,Blank[ ]]] |
Additional input forms, in order of decreasing precedence.
Special Characters
Special characters that appear in operators usually have names that correspond to the names of the functions they represent. Thus the character has the name \[CirclePlus] and yields the function CirclePlus. Exceptions are \[GreaterSlantEqual], \[LessSlantEqual] and \[RoundImplies].
The delimiters in matchfix operators have names and
.
"Listing of Named Characters" gives a complete listing of special characters that appear in operators.
|
|
Keyboard and special characters with the same interpretations.
|
|
Some keyboard and special characters with different interpretations.
Precedence and the Ordering of Input Forms
The tables of input forms are arranged in decreasing order of precedence. Input forms in the same box have the same precedence. Each page in the table begins a new box. As discussed in "Special Ways to Input Expressions", precedence determines how Mathematica groups terms in input expressions. The general rule is that if has higher precedence than
, then
is interpreted as
, and
is interpreted as
.
Grouping of Input Forms
The third columns in the tables show how multiple occurrences of a single input form, or of several input forms with the same precedence, are grouped. For example, is grouped as
("left associative"), while
is grouped as
("right associative"). No grouping is needed in an expression like
, since Plus is fully associative, as represented by the attribute Flat.
Precedence of Integration Operators
Forms such as have an "outer" precedence just below Power, as indicated in the table above, but an "inner" precedence just above
. The outer precedence determines when
needs to be parenthesized; the inner precedence determines when
needs to be parenthesized.
\[ContourIntegral], \[ClockwiseContourIntegral] and \[DoubleContourIntegral] work the same as \[Integral].
See "Two-Dimensional Input Forms" for two-dimensional input forms associated with integration operators.
Spaces and Multiplication
Spaces in Mathematica denote multiplication, just as they do in standard mathematical notation. In addition, Mathematica takes complete expressions that are adjacent, not necessarily separated by spaces, to be multiplied together.
• x y z ![]() |
• 2x ![]() |
• 2(x+1) ![]() |
• c(x+1) ![]() |
• (x+1)(y+2) ![]() |
• x! y ![]() |
• x!y ![]() |
Alternative forms for multiplication.
An expression like could potentially mean either
or
. The first interpretation is chosen because Factorial has higher precedence than Not.
Spaces within single input forms are ignored. Thus, for example, is equivalent to
. You will often want to insert spaces around lower precedence operators to improve readability.
You can give a "coefficient" for a symbol by preceding it with any sequence of digits. When you use numbers in bases larger than 10, the digits can include letters. (In bases other than 10, there must be a space between the end of the coefficient and the beginning of the symbol name.)
Some cases to be careful about.
Spaces to Avoid
You should avoid inserting any spaces between the different characters in composite operators such as ,
, and
. Although in some cases such spaces are allowed, they are liable to lead to confusion.
Another case where spaces must be avoided is between the characters of the pattern object . If you type
, Mathematica will interpret this as
, rather than the single named pattern object
.
Similarly, you should not insert any spaces inside pattern objects like .
Spacing Characters
• Ordinary keyboard space (\[RawSpace]) |
• \[VeryThinSpace], \[ThinSpace], ..., \[ThickSpace] |
• \[NegativeVeryThinSpace], \[NegativeThinSpace], ..., \[NegativeThickSpace] |
• ![]() |
Spacing characters equivalent to an ordinary keyboard space.
Relational Operators
Relational operators can be mixed. An expression like is converted to Inequality[a, Greater, b, GreaterEqual, c], which effectively evaluates as
. (The reason for the intermediate
form is that it prevents objects from being evaluated twice when input like
is processed.)
File Names
Any file name can be given in quotes after ,
, and
. File names can also be given without quotes if they contain only alphanumeric characters, special characters, and the characters
,
,
,
,
,
,
,
,
,
,
, and
, together with matched pairs of square brackets enclosing any characters other than spaces, tabs, and newlines. Note that file names given without quotes can be followed only by spaces, tabs, or newlines, or by the characters
,
, or
, as well as semicolons and commas.