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Maintenance tends to degrade the structure of software, ultimately making mainte-
nance more costly. At times, then, it is worthwhile to manipulate the structure of a
system to make changes easier. However, it is shown that manual restructuring is an
error-prone and expensive activity. By separating structural manipulations from other
maintenance activities, the semantics of a system can be held constant by a tool, as-
suring that no errors are introduced by restructuring. To allow the maintenance team
to focus on the aspects of restructuring and maintenance requiring human judgment, a
transformation-based tool can be provided—based on a model that exploits preserving
data flow-dependence and control flow-dependence—to automate the repetitive, error-
prone, and computationally demanding aspects of restructuring. A set of automatable
transformations is introduced; their impact on structure is described, and their usefulness
is demonstrated in examples. A model to aid building meaning-preserving restructur-
ing transformations is described, and its realization in a functioning prototype tool for

restructuring Scheme programs is discussed.
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Chapter 1

Introduction

1.1 The Maintenance Problem

Computer software has been touted as a panacea for the engineer because it is so mal-
leable compared to physical construction media such as concrete, steel, and silicon. How-
ever, its apparent flexibility has not been successfully exploited—software maintenance
(enhancement and repair) remains disproportionately expensive relative to the expected
cost of the required changes and the quality of the resulting software.

In studies of OS/360 and other large systems, L.A. Belady and M.M. Lehman ob-
served that the cost of a change grew exponentially with respect to a system’s age [Belady
& Lehman 76a]. They associated these rising costs with decaying structure caused by
the accumulation of unanticipated changes:

The addition of any function not visualized in the original design will inevitably
degenerate structure. Repairs also, will tend to cause deviation from structural
regularity since, except under conditions of the strictest control, any repair or patch
will be made in the simplest and quickest way. No search will be made for a fix that
maintains structural integrity [Belady & Lehman 71, p. 113].

They conclude that this cannot go on indefinitely without having to rebuild the system

from scratch, and the need to minimize software cost

suggests that large-program structure must not only be created but must also be
maintained if decay is to be avoided or postponed. Planning and control of the



maintenance and change process should seek to ensure the most cost-effective balance
between functional and structural maintenance over the lifetime of the program.
Models, methods and tools are required to facilitate achieving such balance [Lehman

80, p. 383].

The structural principle of information hiding is used for the initial design of a system
to isolate each design decision that is likely to change in a module. Effective isolation
increases software flexibility by reducing the cost of changing these volatile choices [Par-
nas 72]. But when an unanticipated need for change arises—say, due to demands for
enhancement from users—some decisions motivating the original module structure will
no longer be valid. This implies that the changes will cross module boundaries, and
module interfaces and implementations will have to be modified [Parnas 79]. This need
for non-local change is the key property of structural degradation.

One way structural degradation can be addressed is to restructure the program to
isolate the design decisions that must evolve in reaction to an unanticipated need for
change. Maintaining structure, however, is itself a complex and costly activity. Indeed, it
is just like making a functional change in a structurally inadequate system. In particular,
global search and change is required to maintain the behavioral relationships between a
modified interface and the references to it throughout the program. This, in part, is why
there is a preference for quick fixes over those that retain or improve structural integrity.

The thesis of this research is that global restructuring can be cost-effective, but only
if automated and separated from other qualitatively different maintenance activities. In

particular, it is claimed that:

e The cost of manual restructuring is, in practice, proportional to the complexity of

the software.

e Automating restructuring reduces its costs by performing the non-local aspects of

the restructuring.

e Automating restructuring avoids introducing costly errors into the system.



To effectively isolate design decisions, automated restructuring must support chang-
ing the interface relationships between modules so that what otherwise would be in-
termodule changes become intramodule changes. Remodularization requires more than
automated removal of gotos or control flow restructuring [Béhm & Jacopini 66][Williams
& Ossher 77][Morgan 84]. For example, it requires operations such as adding or remov-
ing a function from a module interface, changing a function interface, or hiding exposed
representation in a module. And since these restructuring operations are intended to
ease future maintenance, the software engineer must be able to direct the restructuring
towards aiding anticipated future maintenance.

To address these requirements, this thesis proposes automating restructuring so that
the software engineer applies a local structural change to a syntactic form in the program,
and the tool performs the compensating changes—potentially distributed throughout the
program—necessary to prevent introducing inconsistencies into the program. This frees
the engineer of the highest costs of structural changes: non-local search and change,
and later, debugging to repair inconsistencies in the distributed changes. Furthermore,
this approach leaves the engineer in control of the subjective activities of choosing the

appropriate structure.

1.2 Possible Solution Approaches

The range of approaches for solving the problems of structural maintenance fall into the
categories of models, languages, methods, and tools. The models approach is represented
by Belady and Lehman’s work, discussed further in Section 1.4.2.

A languages solution entails designing or extending a language to accommodate the
evolution of structure in a program. Object-oriented languages are representative of this
approach. An object-oriented language permits adding function to a program, if designed
properly [Cunnington et al. 90], by incrementally, relatively locally augmenting the
existing class structure—modifying existing classes (modules, of a sort) is not necessary.

This postpones restructuring for a class of extensions.



A methods solution provides techniques—guidelines—that a software engineer can
apply to build a system so that it is easy to evolve, or to restructure it if it has become
difficult to evolve. Parnas’s guidelines for module [Parnas 72| and virtual machine [Par-
nas 79] design are examples of techniques that can postpone structural modification of
a system by assuring locality of change for likely changes. Methods are largely language
independent, although the presence of language mechanisms to support the methods can
be helpful. For example, the package construct in Ada helps describe and enforce system
decomposition in Ada programs.

Although the other approaches are essential, the inherent costs of restructuring—
managing the consistency of non-local changes—cannot be reduced without automation
(See Section 1.4). A tools solution provides computer support for structural activities
that are difficult for the user to perform correctly or quickly, but are easy for a computer
to perform. For maintaining software structure, a tool might ease access to a language’s
features, help reveal structural properties of a program, or aid in the keeping track
of auxiliary information related to system structure and evolution. For example, the
Revision Control System [Tichy 82] captures the change history of a program and allows
versions to be tracked. If errors are introduced into a tracked program, earlier program
versions can be retrieved to return to a working version or help find the change that
caused the error. Like a language, a tool can make methods easier to follow or apply.
A tool that discovers component relationships [Embley & Woodfield 88][Rich & Waters
88][Schwanke 91][Selby & Basili 91] or that automates remodularizing a program can
aid an engineer in using Parnas’s system decomposition principles to achieve locality of

change.

1.3 A Tools Solution—Restructuring

This thesis focuses on a tools solution to mitigate the software maintenance problem. The
goal is to automate the manipulation of program structure to reduce the cost of structural

evolution. This approach is based on the premise that modifying a program whose



structure is not natural for the given change can be more costly than first restructuring
it to a more accommodating form with the aid of a tool, and then modifying it. It also
supposes, as Belady and Lehman claim, that structural degradation occurs naturally,

and cannot be avoided by forethought or language mechanisms [Belady & Lehman 71].

Changes that cross module boundaries are the ones that will be costly to per-
form [Parnas 72]. This includes manual restructuring. As an example, consider a pair of
routines that must always be called in a particular order, such as an allocation function
and an initialization function. Suppose this is unenforced in their implementation, but
now it is desired to enforce the ordering by bundling the two calls into a new allocate—
and—initialize function. This requires not only exporting the new function and unexport-
ing the other two, but also requires changes at every site where the individual functions

are called, potentially in many modules, and thus costly and error-prone.

Applying such non-local updates and assuring their consistency to avoid introducing
errors are what make restructuring difficult. A tool can help by managing the distributed
updates so that they preserve the desired semantic properties of the program. By au-
tomating only this aspect of the restructuring process, the software engineer is freed of
the error-prone aspects of restructuring, but is left in control of the subjective task of

choosing an appropriate structure for making an enhancement or repair.

A tool can perform the non-local aspects of structural changes such as bundling a
pair of calls into a single call, replacing an expression with a variable that has its value,
swapping the formal parameters in a procedure’s interface and the respective arguments
in its calls, adding a parameter to a procedure definition and the appropriate argument
to its calls, replacing in-line code with a call to a function that contains that code, and

hiding exposed representation in a module, to name a few.

One way a tool can automate a structural change is to take a “local” structural
change by the engineer, and then find the distributed updates necessary to preserve the
meaning—that is, the correspondence between inputs and outputs—of the program. For

example, in the abbreviated program in Figure 1.1, when the engineer swaps push’s for-



mal parameters to conform to interface rules, the tool would be responsible for swapping
the arguments in its calls. If evaluation order of the arguments might affect the values of
the arguments—as in the call of h(myStack) in the second call on push—the tool would
be responsible for prohibiting the change and alerting the engineer to the problem. For
a restructuring tool to be precise enough to be useful, then, it must be able to examine

the definitions of functions (such as h) to determine properties such as side-effects to

arguments.

procedure push(s, v) procedure push(v, s)
insert(v, s.head) insert(v, s.head)
return s return s

end end

. = .
push(myStack,1) push(1,myStack)
push(myStack,h(myStack)) push(h(myStack) ,myStack)

Figure 1.1: Swapping the parameters of procedure push

A tool that preserves meaning by making the necessary non-local changes assures
making coherent distributed changes. In particular, given an engineer’s change, the
tool takes responsibility for finding the components to be updated and for preserving
the program’s meaning. This frees the engineer of the searching and updating neces-
sary to complete a non-local change, as well as checking if the changes are sufficient
to preserve meaning. Also, this model enables the engineer to locally specify the global
restructuring—the engineer’s change to the definition of push implies for the tool changes

in all its uses.



1.4 Restructuring and the Maintenance Process

Can restructuring reduce the cost of maintenance? A first step towards answering this
question is to establish a basis for evaluating the potential success of restructuring. Then
a tool can be built on the premises of the model, and experiments conducted to see if
the data fits the model. This section develops a maintenance cost model accommodating

restructuring.

It is common knowledge that maintenance is the most expensive component of the
overall software process, running as high as 70% [Lientz & Swanson 80]. Belady and
Lehman have related software structure and the cost of maintenance at the macro level
of detail, providing an equation that relates system age, structure, and maintenance
costs. Parnas’s work is less quantitative, but provides guidelines for building struc-
turally robust programs. Although Parnas’s and Belady and Lehman’s research do not
explicitly address restructuring, their work links a program’s structure and the cost of
its maintenance. This link is used to argue that tool-aided restructuring can lower that

cost.

1.4.1 Modules and Structure

The primary structuring mechanism for reducing the cost of changes is abstraction,
particularly through the module and the procedure. A module (or procedure) hides a
design decision, allowing changes to that decision without affecting other parts of the
program [Parnas 72]. Parnas emphasizes that modules are used to isolate design decisions
that the designer anticipates are likely to change [Parnas 79]. Accordingly, any change
not accounted for by the designers can affect many modules, rather than just one, and
thus change their interfaces [Parnas 79], which is costly [Parnas 72]. Thus a module
decomposition should establish interfaces between modules that are unlikely to change

when changes are made to the program. However, user-driven enhancement implies



that enhancements can be proposed that were not anticipated by the original designers.!

Thus, in spite of the designers’ best efforts, unanticipated changes, and hence non-local

ones, will arise.

Also, given the range of possible future enhancements, it is not economically feasible
to accommodate every one [Boehm 81, pp. 20-21|[Parnas 79]; given a set of design
decisions to hide, there may be conflicting feasible modularizations of a program. One

must be chosen in favor of the others.

As an example of conflicting modularizations, suppose a programmer is designing an
interpreter for a polymorphic programming language. Following traditional modular-
ization techniques, the programmer factors the program into the types in the language.
There is also a module polymorphic that knows about how each operation in each type
is combined into a polymorphic operation in the language. Now suppose the type set
(implemented with hash tables) is added to the interpreter. It can be added with local
change: a set module is added for the set type, and the module polymorphic is changed
to account for its operations. Now suppose a new operation, such as an iterator for aggre-
gates is added. Then it is necessary to modify every module encapsulating an aggregate
type, plus the module polymorphic. These two enhancements—along the orthogonal
“dimensions” of type versus function—suggest different modularizations; however the

designer can choose only one.?

The notions of coupling and cohesion can be used to help manage modularization
tradeoffs [Stevens et al. 74][Embley & Woodfield 88]. A relationship between two com-
ponents in different modules is coupling. In contrast, a relationship between two com-
ponents within a module is called cohesion. There are several classes of coupling and

cohesion, some desirable, some not, based on their ability to localize the impacts of soft-

TAlan Perlis asserts that modifications to software are determined by “traffic”, i.e., the kind and
quantity of usage a piece of software undergoes [Perlis 88]. Only software that gets used heavily is likely
to be changed, and the style of usage determines the kinds of changes requested.

2A class-based langnage can represent the polymorphism in an inheritance graph. However, this
distributes the type and function information among superclasses and subclasses. In particular, the
change for adding the iterator would be non-local, requiring changes to the aggregate superclass and all
its subclasses that do not share representation (i.e., iteration for lists vs. hash tables is different).



ware change. By choosing to structure a system that favors the desirable classes (for
those design decisions that are most likely to change), the structure should allow local
change during maintenance. Likewise, an engineer can employ these design rules during
restructuring [Stankovic 82], but using the newly evolved design goals.

For example, two kinds of coupling are common coupling and data coupling. Com-
mon coupling® is the relationship due to two modules sharing global data. Data cou-
pling is sharing through parameter passing in procedure calls. The latter kind of sharing
is preferred. Two kinds of cohesion are control cohesion and informational cohesion.
Two components are control-cohesive if they reside in the same module and are related
primarily by the fact that they are referenced in close time-proximity to each other.
Control cohesion is considered to be fairly weak, and so not very desirable. Information
cohesion is the intramodular relationship between a data representation and the func-
tions that directly access it. Information cohesion—typically manifested in a good data
abstraction—is very desirable, especially in contrast to its (potential) coupling counter-
part, representation coupling.

However, when the potential for conflicting design choices is combined with the un-
certainty of which changes will be requested, it is likely that the choices made will not
be optimal, even when managed by coupling-cohesion tradeoffs. The non-local change
implied will require a programmer to understand and manipulate a significant proportion
of a program’s components—often textually dispersed and subtlely related—increasing
the chance of introducing errors when performing the change. As an example of the
subtlety of component relationships, a study of a software product’s maintenance re-
vealed that 53% of the defects introduced by adding new product features were to ex-
isting features [Collofello & Buck 87]. Also, removing an error during maintenance is
expensive—as expensive as a typical change during maintenance [Boehm 81, pp. 40-41]
(See the next paragraph). Unsuitable modularization for a specific enhancement, then,

is potentially a high cost of maintenance, and so automated restructuring must support

3Common coupling gets its name from the FORTRAN COMMON statement, used to share global
data between functions.
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remodularization. Of course, during restructuring itself it is necessary to cope with the
subtleties in software to avoid expensive errors. This implies that a primary requirement
of automated module restructuring is is preventing the introduction of errors during

restructuring.

1.4.2 Structure and Complexity

Parnas identifies an unavoidable source of high maintenance cost and describes how it
can be reduced, but he makes no predictions about the actual cost of changes. In their
studies of OS/360 and other large systems, Belady and Lehman observed that the cost
of maintenance grew exponentially with respect to a system’s age [Belady & Lehman
76a]. Based on this evidence, Belady and Lehman defined a model of maintenance cost

based on a program’s complexity at release ¢ [Belady & Lehman 71]:
O = 92G()=DAL(i)

G/(1) represents the complexity of the system, which as an observable variable can be
quantified as the percentage of modules handled in a release interval [Belady & Lehman
76b]. DAL(7) (known as “Documentation, Accessibility, and Learnability”) represents
the quality of the documentation and programmer comprehension of the system. By
improving documentation and increasing programmer familiarity with a system, com-
plexity can be controlled. Also, since the size of a system tends to grow linearly with
respect to the release interval number, the complexity of a system grows exponentially
in relation to its size. This model for complexity equates to the cost of a change, since
to make a correct change requires cross-checking it for consistency for an exponential
number of relationships.

The exponential growth in complexity is due to stratification of changes during the
system’s history [Belady & Lehman 71]. A way to understand this intuitively is to
look at the fault structure of the system relative to changes. From the base system an

attempt to repair an error will remove one error, and perhaps inject others accidentally.
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If removing this error was not the last error, there are residual errors as well. This
means that there are now two kinds of errors, old ones and new ones, introduced at
different times for different reasons. If this occurs at each error-correction step, then
there is a binary tree of corrections, each leaving residual errors and generating new
ones, thus growing the tree (See Figure 1.2). The layering of changes yields a network of
relationships between the program base and amongst the repairs. In fact there are 2G (1)
individual strata, and QG(i)(QG(i) —1) pairwise relationships among them to be considered
(hence 260) 4 2G()(2G0) — 1) = 22G() of the complexity equation). This same structure
arises in the system whether the change is an error repair or an enhancement, since the
enhancement is like a repair that is not removing residual errors. Note also that even if
all the errors are removed, the strata persist as the network of corrections of the errors.

That is, the leaves of the tree are single child residuals with no generated errors.

Ry

Ga
Ry o

Ga

Rq3

G133
Ry 3

)

Ga3

Figure 1.2: Program change strata due to residual (R) and generated (&) errors

Any change that is made by a programmer must be checked for consistency with every
element in the strata, requiring exponential work, as well as requiring repair of affected

elements [Belady & Lehman 71]. If this work is not done, then the error strata are likely
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to be expanded, requiring greater work in the future to remove generated errors.

From Parnas’s perspective, the increasing number of relationships suggests that the
potential for locality of change is decreasing, and that module interfaces are more likely
to be changing. In essence, the model quantifies—asymptotically—Parnas’s claim that

it is impossible to maintain locality of change indefinitely.

Belady and Lehman concur, concluding that exponential growth in complexity is
inevitable, and increasing DAL can only delay the effects [Belady & Lehman 71]. They
complement their conclusion with the claim that progressive activities such as enhance-
ment require continual anti-regressive effort to maintain the documentation and pro-
grammer familiarity on such changes. However, anti-regressive activities in practice get
ignored under financial and time pressures, and because they are not usually as psycho-
logically satisfying as progressive activities. As complexity increases, so does the need
for anti-regressive activity. This can be maintained only while complexity is not too
large (since the cost of DAL is likely to be related to complexity), at which point system

replacement becomes more economical.

The relationship between complexity and structure is simple: the structure of a
system is manifested by the components that must be handled (updated or checked)
when a change is made. All those components handled for a change are related through
that change. The cost of a change is related (exponentially) to the size of the relation. A
change is local if a small number of components are handled during a change, but global
if a large number of components are handled. Using Parnas’s model of structure, small
changes do not change module interfaces (the number of components handled equals
one), but large changes do (the number of components handled is greater than one).
The latter is reflected in the equation of Belady and Lehman as high handle rates (over
a release interval) and thus large C'. In both models, then, good structure means that

changes affect few components, and that module interfaces are not affected.
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1.4.3 Injecting Tool-Aided Restructuring into the Model

Given that good structure requires stable interfaces, and also that stable interfaces are
improbable given user-driven changes, restructuring is required to create stable module
interfaces for a change. However, the model predicts that (manual) restructuring, being

undifferentiable from any other kind of change, will be just as costly.

Automated restructuring is different. First, the automation preserves meaning, so
no errors are generated, and no strata are added. Second, the knowledge of the program
by the restructuring tool is perfect (for example, it can find all uses of a variable—
albeit conservatively—whereas an engineer might make errors due to mistracing pointers,
missing some files, etc.) and it comes at low cost since it is fully automated. This means,
according to the equation above, that 2G/(1) = DAL(t), and so restructuring has constant
cost with respect to release number, and thus constant complexity. Note restructuring
cannot reduce the number of existing faults, since meaning is preserved. However, if
restructuring is targeted to the change, so that it is localized within a module, the
number of strata elements and their pairwise interactions of elements for the proposed
change is reduced drastically. This would cause a large reduction in complexity for the

change.

The Belady and Lehman model does not try to quantify such a situation. In partic-
ular, complexity is now being judged relative to a particular change, and restructuring
can lower the complexity of a change at little cost. Changing indexing in the complexity
equation to reflect changes rather than releases would bring the model closer to Parnas’s
observation that the cost of a change depends upon it being anticipated. But modifying
the indexing of the complexity equation to reflect changes rather than releases is not
without problems. For instance, a change interval will typically be much smaller than
a release interval, and some activities (say, perhaps, reorganizing a project’s personnel

organization) can only occur on a per-release basis.

Another variable not modeled accurately is that relationships between modules are

viewed as much more expensive to manage then those within a module. If the restruc-
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turing tool helps to perfectly localize a change, then G goes to zero [Belady & Lehman
71], and thus the cost of a change goes to zero, which is not precise since it ignores the
time using the tool. Also reducing GG probably has a negative impact on DAL. However,
Belady and Lehman have observed that, asymptotically, G dominates DAL, and in fact
that as GG increases, DAL decreases. So attacking G even at the expense of DAL is the

best choice, and it appears complexity—for the particular change—will be small.

The Belady and Lehman model projects a low cost for automated restructuring or
the subsequent change itself, but no measure. Unfortunately, no simple enhancement
of the model is possible. The original model provides no quantitative definition for
functions G and DAL, so it is impossible to enhance them. Also, the Belady and Lehman
model is supported by substantial quantitative data [Belady & Lehman 76a] and cogent
theory [Belady & Lehman 71]|[Belady & Lehman 76a]. The change in indexing, effects on
G and DAL, and the actual cost of restructuring must be derived in the same manner.
Experience with a tool like the one described in this thesis will help define a G that

reflects the benefits of automated restructuring.

The analysis above suggests that restructuring should occur before system structure
has degenerated too much, and that automated restructuring can reduce maintenance
costs considerably. Restructuring may profitably occur on a per-change basis, since if the
estimated cost of a change (without restructuring) is judged to be too high, restructuring
will be appropriate if its cost plus the cost of the subsequent (local) change is not be
above that of the original estimate. This, of course, does not account for the potential

long-term effects of a restructuring, which are harder to measure.

1.5 A Restructuring Example

To give a feeling for the sorts of structural problems encountered during maintenance
and how a tool can help, consider a community transit system that actively tracks the

distance traveled by each bus on the road. The bus module exports this value as variable
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miles-traveled (See Figure 1.3).* Every three minutes the bus sends its trip odometer
reading to the central computer, which assigns it to miles-traveled. This information
is used by the tracking module for displaying the location of the bus on a map for
the dispatcher. Also, the total accumulated miles are used for scheduling preventive
maintenance of the buses.

When the bus authority decides to put buses onto ferries to service nearby islands,
miles-traveled cannot be used for both scheduling maintenance and also locating a
bus, since not all travel miles will be rolling miles. A new abstraction is needed to
separate rolled miles from those due to ferry trips. Further, it is necessary to determine
which expressions currently using miles-traveled should be just rolled miles, and which

should be the combined value.

maintenance tracking
MT MT
\bus /
MT

Figure 1.3: module export—import structure of the initial transit system
(MT = miles-traveled, definition in italics)

The objective of the software engineer is to add ferries to the system without changing
the behavior of the system with regard to old (non-ferry) inputs. With a restructuring
tool the engineer can locally specify structural changes without changing the meaning
of the program. By preceding the enhancement with restructuring, the changes needed

to implement the enhancement will be local, and thus easier to perform. Automated

*This example is unrealistic, since it handles only one bus. In a more realistic example, the
miles-traveled variable would probably be a record field of the bus type to allow an arbitrary number
of buses. The example would be essentially the same in this form.
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restructuring will also reduce the number of changes that can contain new errors.

First, the bus module variable miles-traveled needs to be renamed to rolled-miles
to reflect more precisely its true meaning. With the tool the engineer invokes the transfor-
mation rename-variable(miles-traveled declaration, “"rolled-miles"), which changes
the names of all references of the variable to rolled-miles. This is not just a syntactic
change, since only references to that name within that scope should be changed. Also,
for the name change to preserve meaning, the tool must verify that the new name does

not conflict with any names in the modified scope.

Now a new abstraction, total-miles, must be created, which will eventually be the
combined value of rolled-miles and ferry trip miles. Everywhere rolled-miles gets
the new odometer value, so should total-miles. However, it is not satisfactory to repre-
sent total-miles as a variable, and add the code total-miles := rolled-miles where
rolled-miles is updated. One reason is that it distributes the updates to total-miles,
and hence later will force global updates to make the ferry miles enhancement. Also, if
updates to ferry miles are represented as increments rather than total miles, assigning

rolled-miles to total-miles will overwrite the accumulated ferry miles.

To avoid these problems, the engineer introduces a function total-miles that re-
turns rolled-miles. This is done by invoking make-function(use of miles-rolled,
"total-miles"). This defines a function whose value is rolled-miles when called.
Then the engineer invokes global-substitute-function(total-miles), which brings
each expression equivalent to the function—each reference to rolled-miles—to the en-
gineer for approval to substitute. The engineer approves the matches in the bus tracking
module and prohibits the ones in the bus maintenance module. Meaning is preserved by
these substitutions because each call exactly represents the reference to rolled-miles

that was replaced.

If the search finds an instance that updates rolled-miles, and the engineer wants
it to be total-miles, there is probably an encapsulation violation in the system. That

is, rolled-miles should be updated solely by readings from the odometer in the bus



17

module. However, this could occur if there is already another kind of mile that is not
strictly a rolling mile. The substitution by global-substitute-function on such a

match is prohibited because it is syntactically illegal to assign a value to a function call.

Next the engineer creates the ferry-miles variable using create-variable. Again,
this is not just a syntactic change; the operation verifies that it does not mask or conflict
with any existing variable declarations. This new variable is not referenced, so it does
not affect the system’s meaning. Up to this point, the program performs exactly the

same function as before.

Finally, the engineer augments total-miles by adding code that sums rolled-miles
with ferry-miles and initializing ferry-miles to zero. The remaining changes are

enhancements that involve introducing the ferry module (See Figure 1.4).

The tool eased the structural change of splitting the two miles concepts by creat-
ing the total-miles function and finding all uses of the original expression, but let
the engineer decide which uses represented the abstraction total-miles. The actual
enhancement—adding ferry miles to rolled miles throughout the system—was simplified
by encapsulating the total-miles concept in a function. This localized the travel concept:
only one addition was required to incorporate ferry miles. Another positive byproduct
is that the total-miles function structurally represents that it is built from smaller

components, preventing direct modification of its value.

Without a restructuring tool, the repair requiring the fewest changes is augmenting
each reference of the original total-miles variable to include a reference to ferry miles.
This would minimize the number of changes that the engineer manually performs, in the
short term minimizing the cost of maintenance and the chances of introducing an error,
but also introducing coupling by distributing several identical expressions throughout
the program. Another change to the miles concept would require changing all those
expressions again, unlike the restructured version, which has only a single instance of

the expression.

Although restructuring by hand can improve structure to a degree, the process is
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error-prone, as observed in Chapter 3, degrading the program by adding to the change
strata. Since the restructuring tool automates meaning-preserving global changes, it

makes the necessary non-local changes without error.

maintenance tracking maintenance tracking
RM ™ MT MT EM
\bus / ferry \bus / ferr:/\
™ % %
RM FM FM MT FM FM
(a) (b)

Figure 1.4: The module export—import structure of the extended system
with restructuring (left) and without (right)
(RM = rolled-miles, 'M = ferry-miles, TM = total-miles,
MT = miles-traveled, definitions in italics)

1.6 Structure and Meaning

The primary challenge for automating meaning-preserving restructuring is formulating a
model for correctly and efficiently implementing meaning-preserving structural changes.
A standard way of describing a meaning-preserving structural change is through an

algebraic law, such as the distributivity law in algebra:

tX(y+z)=(zxy)+(z X 2)

The property allowing this algebraic description is transparency. Multiple references
to the same symbol (say, to z above on the right-hand side) denote the same value—
symbol and value are immutably associated. A program written in a functional language
has transparency because it has no variables for representing changing state. This allows

algebraic manipulation of functional programs.
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C.A.R. Hoare et al. demonstrated that imperative programming languages also obey
powerful and intuitive algebraic laws that permit source-to-source transformation [Hoare
et al. 87]. For example, there is a law that says a variable reference can be replaced by
its defining expression. For example, given expression E, and expression F using x, F(x),

then x := E; F(x) is equivalent to F(E).

A law as simple as this applies only to languages with restrictions on input/output,
pointers, recursion, and procedure call to achieve a degree of transparency that normally
is not present in imperative languages. In the example above, E and F, by definition of
the language used by Hoare et al., are known not to have side-effects. This is important
because the order of evaluation is potentially changed by substituting E in place of x. Also
if x is referenced multiple times in F(x), then E is evaluated multiple times in F(E). If E
were allowed to contain side-effects, the substitution would cause repeated side-effects,
disallowing application of the law. Further, in an imperative programming language
with global variables and procedure call, meaning-preserving substitution depends on
how global variables are referenced in the procedure calls made in the expression. In this

case the properties of an expression cannot be locally determined.

These problems of imperative programming languages can be overcome by a richer
notation that captures program properties not immediately visible in the text. The so-
lution adopted in this thesis is a notation based on control and data flow relationships,
represented by the program dependence graph (PDG) [Kuck et al. 81][Ferranteet al. 87].
Among other important properties, the PDG has more of the referential transparency
necessary to reason algebraically about a program. This is achieved by representing a
variable by edges that explicitly carry values between operations, which are the vertices
of the graph. As described in Chapter 4, when combined with a conventional hierar-
chical syntactic abstraction of the program, it is possible to reason algebraically about
structural changes to an imperative program, and to implement those changes efficiently

as well.
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1.7 Goal

This chapter has introduced the basic motivation and ideas for automated restructur-
ing, including examples of how it can be used, a cost model for maintenance and some
background on manipulating structure. Together these imply that automated restruc-
turing can be beneficial if successfully implemented. The ultimate goal of this research is
to show that meaning-preserving transformation can restructure, substantially lowering
the cost of the changes required to maintain a software system. However, this requires
long-term use in a realistic setting, so the purpose of this thesis is to take the first step
by demonstrating the following:

Automating the meaning-preserving activities of restructuring through transforma-
tion improves the manual process of restructuring. In particular, the automation not
only prevents the introduction of errors during restructuring, but allows locally specifying
structural changes.

The hypothesis is demonstrated by (1) defining a set of transformations that can
restructure programs, (2) conducting an experiment with a restructuring tool and hu-
man subjects to demonstrate the problems with manual restructuring, (3) defining a
model for meaning-preserving source-to-source transformation, and (4) using the model
to efficiently implement the transformations as a tool. The following is a more detailed

summary of the contents of the thesis.

1.8 Overview

Chapter 2 describes the basic meaning-preserving transformations necessary for restruc-
turing programs written in a block-structured imperative programming language, in this
case Scheme [Dybvig 87]. To show how the transformations restructure, they are used
in the prototype to restructure a Scheme matrix multiply program.

Scheme was selected because of its rich imperative features, its simple syntax, and the

availability of a PDG package for Scheme programs [Larus 89]. The implementation is in
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Common Lisp because of its prototyping flexibility and because it is the implementation
language of the PDG package. There is no inherent or conceptual limitation in applying
the ideas of the tool to other more commonly used languages, and the transformation set
extends naturally to the manipulation of module and class interfaces, which is discussed

in Chapter 7.7.

In Chapter 3, matrix multiply is again used in an experiment to evaluate the benefits
of automated restructuring. The experiment records the performance of several program-
mers, each restructuring the matrix multiply program by hand. The observed manual
process is compared with the process of using the tool. The comparison reveals that
manual restructuring is haphazard and error-prone. It also indicates that the style of
restructuring supported by the tool is consistent with manual restructuring techniques,

implying that the tool should be intuitive to use.

Chapter 4 defines a model for building efficient, meaning-preserving transformations.
It is critical to have assurance that the transformations in the PDG (and in the program
text) preserve meaning. It is also important that a meaning-preserving transformation
be straightforward to design and implement. One problem is that the program represents
scope structure well, but the PDG represents the semantic relationships between expres-
sions well. The solution to this dichotomy is to create an invertible mapping between
the program and its PDG so that the best features of each are equally accessible. This
relationship is formally defined with a commutative diagram. Reasoning about meaning-
preserving transformation on the program is potentially difficult because the changes are
physically distributed in the program. However, the equivalent changes in the PDG rep-
resentation are local. The commutative diagram facilitates justifying a transformation
in the PDG, and mapping it to an equivalent source-to-source implementation by a
process called globalization. Once both a program and equivalent PDG transformation
exist, the commutative diagram justifies applying them together, avoiding the expense

of reconstructing one representation from the other.

The following chapter on implementation describes how the model guided the design
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of the prototype restructuring tool. This chapter demonstrates how the mathematical
properties of scopes, the PDG and the commutative diagram are exploited to simplify
implementation and achieve good performance. It also describes the use of program
integration techniques that allowed prototyping research ideas in this thesis.

Chapter 6 evaluates the research by comparing this work with other research in the
areas of transformation, restructuring and maintenance. Although there is a significant
amount of work in program dependence graphs and also in transformation, the two
have not been applied together in a maintenance context. Chapter 7 discusses the
current limits of meaning-preserving restructuring as a technique, and as realized in
this thesis. This thesis has explored restructuring in a language without modules, and
has not restructured large programs, but solutions are proposed for these shortcomings.
The primary weakness of the prototype is poor performance because the PDG is entirely
reconstructed from the program after most transformations. The incremental update
techniques described in Chapter 4.5 can overcome this anomaly of the prototype. To
close the thesis, the contributions of the research are summarized and evaluated.

The appendix presents a larger and more involved program restructuring using the
prototype tool. The program, the KWIC indexing system, is a well-known example
introduced by Parnas for discussing issues in module decomposition [Parnas 72]. The

restructuring derives Parnas’s preferred decomposition from one he showed is inferior.



Chapter 2

Transformation—Based

Restructuring

Program transformation is the approach taken in this thesis to restructuring a program.
A transformation manipulates a program to create a new program. Meaning-preserving
transformations are an important class of transformations, because they can change the
appearance or speed of a program without affecting its input/output behavior. To show
how meaning-preserving transformations can restructure a program to improve maintain-
ability, this chapter introduces a taxonomy of structure, analyzes several transformations
with it, and then applies the transformations in two examples to show how they are used

to restructure.

2.1 The Global Transformation Paradigm

The transformations in the tool have several basic properties. First, when a transfor-
mation is applied by the engineer, it is guaranteed either to succeed and produce a new
program with the same meaning as the initial program, or else to fail and leave the pro-
gram unchanged. Second, the engineer applies a transformation to a syntactic construct.

Third, to preserve the meaning of the program, the tool may make non-local changes
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to compensate for the syntactic change. Together these properties assure preserving
the program’s meaning and free the engineer from the work involved in the updates.
In essence, the tool is a semantics-preserving structure editor, allowing the engineer to

focus on the design aspects of the restructuring.

To meet these goals the transformations for restructuring described in this thesis
follow a strict paradigm. First, a transformation does not modify any operation in the
program whose output might be different from its input (basically no operator other
than assignment), nor the data or control flowing into them. This assures that the
data flowing out of each operation when it is executed remains unchanged, and so the
meaning of the program is unchanged. What a transformation can change is how values
are delivered from one operation to the next. In particular, only constructs involving
assignment, sequencing, or the visibility of variables can be transformed, such as scoping
and procedure constructs. These organize computations but do not actually perform
them. For example, a variable reference can be replaced by the expression that gives a
variable its value. On the other hand, the paradigm does not support compensating an
increment of a variable reference by a decrement of its defining expression, since + and
- are value-changing operations. A more rigorous model for this paradigm is presented

in Chapter 4, and possible shortcomings and extensions in Chapter 7.

Another aspect of this paradigm is how global restructuring is achieved, although it
is locally specified by the engineer. According to the restrictions above, value-changing
operations cannot be modified. So, for example, the only changes to a procedure that
will be allowed involve the manipulation of its name, its parameters, and the location
of the computations within its body. None of these changes alone is likely to preserve
meaning, so each implies particular updates to the uses of the procedure. Changing the
procedure’s name implies changing the names of its uses to correspond; changing the
order of parameters implies changing the order of arguments in the requisite calls, and
moving an expression within the procedure to outside it implies adding a parameter to

the procedure (and an argument to each call) to pass the value of that expression in
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when called. Of course, checks may be required to assure that these changes to the uses
are sufficient to preserve meaning. The globalization paradigm, then, exploits the link
between a definition of an abstraction and its uses. Since there are normally many uses
for a single definition, it is natural that for most transformations that the engineer’s
change is specified on the definition, and the uses are updated by the tool. However,
in some cases the roles may be reversed if the transformation is to disassociate the
relationship of a particular use from its definition, say by inlining the abstraction at the

point of the use.

Is there a finite set of such minimal transformation functions for a programming
language? A programming language has a finite set of syntactic forms—forms that relate
computations by managing variable name spaces and delivering values. For example,
Scheme, the language supported by the prototype described in chapter 5, has expressions
for generating values (procedure call and variable reference), variables for holding values,
procedures for encapsulating computation (lambda), an expression sequencing construct
(begin), scope bindings combined with expression sequence constructs (e.g., parameter
passing, let, let*, letrec), and assignment (e.g., set!, set-car!, set-cdr!). To
each type of syntactic form there are only a few things that can be done to it that can
be compensated without changing the operators in the program. Loosely, these can be
finitely enumerated as the set of syntactic form types F that have a semantic relationship
with another syntactic form type s such that there exists transformationt:s — f, f € F
without changing the operators in the program. For example, both a variable and an
expression can produce a value. If the variable is assigned the value of the expression,
then the variable returns the same value as the expression. Perhaps one can be used
in the place of the other. By counting transformations in this way, for the N syntactic
forms in a programming language there are at most N? transformations. This includes
transformations that transform a syntactic form to itself, perhaps modifying the order

of objects within it.

Although it appears that there might be an arbitrary number of transformations of
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an object on to itself, these collapse into one transformation. For example, for a param-
eter list of length n, there are (n(n — 1)/2) — 1 possible reorderings of the parameters.
However, these are all reachable by the move-param transformation, a generalization of
the swap-parameter transformation used in Chapter 1.3. Another way that there may
appear to be an infinite number of transformations is by not choosing minimal transfor-
mations. For example, suppose a transformation that takes the variables in a call and

binds them to let bindings, and then makes the call with the new bindings:

(f x) — (let ((x1 x)) (f x1))

and one that creates two levels of indirection:

(f x) — (Qet ((x1 x)) (let ((x2 x1)) (f x2)))

and so forth. The latter is not a different transformation, however, just two applications

of the first transformation.

But is the resulting set of transformations is sufficiently powerful to allow localizing
(most) any design decision so that it may be changed at lower cost? Intuitively, follow-
ing the reasoning above, the set would be complete if it covered the N? possibilities.
More quantitatively, to localize any property means being able to colocate any subset
of program components within a module. A proof of whether a set of transformations
can do this seems untenable, since it requires precise knowledge of the transformations,
the programming language, and even the program. However, the transformations to be
shown below have been derived in the process of restructuring programs by hand and
with the tool. Some of these have also been suggested as useful in the literature [Burstall
& Darlington 77][Hoare et al. 87]. However, the effectiveness of this set in localizing
change is being validated in practice. Also, although the current set is not complete, it
is not difficult to add new transformations as experience with restructuring grows (see

Chapter 5.5).
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2.2 Transformations in Compiler Optimization

Many of the transformations for restructuring introduced below are well-known compiler
optimizations or their inverses.! For example, inlining a function is a common optimiza-
tion, and its inverse, function extraction, was applied in the transit example and also
in the restructuring of matrix-multiply shown later in this chapter. The need for flow
analysis (see Chapter 4) and preserving meaning are common threads, too. But there are
several differences between compiler optimization and program restructuring for aiding
maintenance. Most obviously, the motivations are different. As discussed in the pre-
vious chapter, the evaluation function for choosing the best restructuring for lowering
maintenance costs is subjective, being dependent on unknown future changes. Also, it
is not clear that there is an inexpensive algorithm for choosing the transformations that
will achieve a particular structure, although in practice it does not seem to be a problem
when the transformations are chosen interactively by the engineer. The cost function
for optimization is clear—lower program execution time—although it is still hard to
evaluate off-line since performance is input dependent. Thus user interaction is not as
necessary in optimization as it is in restructuring. Also, optimization is typically not
required to produce a valid or readable source language representation, working instead
on intermediate code or assembler, a simpler task. Exceptions are the transformations
described by Loveman [Loveman 77], and recent results in optimizing register accesses
in loops [Callahan et al. 90]. Still, neither of these require a readable source, nor an
interactive user interface.

Another difference is that most optimizations are, in practice, local in character—
manipulations on loops and basic-blocks.? An exception is the manipulation of procedure
definitions to optimize parameter passing from caller to callee. Even in this case the callee
definition must be copied so that changes to it for the caller do not affect other callers

of the same routine.

Tt has been argued that many compiler optimizations are based on well-known manual programming
techniques for optimization. Perhaps the influence has come full-circle.
2D. Callahan, Personal Communication, 1991.
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Other domains using program transformation are discussed in Chapter 6.

2.3 Techniques for Representing Structure

By understanding the ways structure can be expressed with modules, the usefulness of
a transformation can be shown by demonstrating how it changes modules to modify
structure. Harold Ossher [Ossher 87] described the basic structural properties essential
to organizing information in a concise fashion, allowing substantial reuse and localization
of changes.

Grouping identifies a set of program components as being part of an aggregate com-
ponent, perhaps with a name. Denoting a group is to denote all the components within
it. Typical grouping constructs in programming language are the expression sequencing
construct, function body, and module body. Abstraction allows identifying a (possibly
grouped) component through a protocol that hides the details of the internals. Proce-
dures and modules fall into this category. A procedure’s protocol is a name and a list
of parameters to be processed by the named function. A module’s protocol is the union
of its procedures’ protocols (with implicit or explicit constraints on how they may be
ordered). Abstraction is useful because it allows easy reuse of a potentially complex pro-
gram component through a simple interface, and there is only one use of the component’s
internals—the definition. This means that a single change to the definition automatically
propagates to all uses without any further change—as long as the interface does not have
to be changed as well. Analogy and Deviation constructs a component by exploiting its
similarity to an existing component, and then adding some things to account for differ-
ences. An example is wrapping a procedure with another to modify its output. Using
inheritance to help build a subclass is another. Closely related to deviation is approz-
imation, which is defining a component that similar to what is desired, but not quite.
The desired component can be created through deviation, and the approximation can be
reused to help create other components. A superclass is an example of an approximate

component that can be reused through the deviation-process of subclassing.
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These organizational techniques can be harmful as well as helpful, so being able to
remove these structures as well as add them is essential. For example, if two compo-
nents are grouped together, but it is desired to denote just one, grouping defeats the
goal. Also, an abstraction may not have a general enough protocol to allow controlling
essential parameters. Any of these problems could result in reimplementing most of the
same component, introducing redundancy and thus decreasing the locality of change if
the common parts must ever be enhanced or repaired. Alternatively, deviation might
be applied to solve these problems, which in these instances would obfuscate the true

relationship between the overly specific component and the resulting more general one.

Deviation, like grouping and abstraction, can be overconstraining, in this instance
because it establishes a tight binding between the base and derived objects. A change in
the base is likely to affect the derived object. If this is not the desired effect, then both

the base and derived objects will need to be modified, which is non-local change.

Thus there are two basic structural problems, both of which force the change of a
single concept into updates on multiple program components, meaning that changes are
not local. The first problem is undesirable coupling (See Chapter 1.4.1), say perhaps due
to redundant codings of a computation in different modules. If one component has to
be changed, it is likely the other must be changed as well: modifying a single ‘concept’
requires multiple updates across modules. Abstracting the relationship, if it is due to
redundant coding, into a single function definition converts the coupling into a cohesive
definition. In other circumstances, undesirable coupling may be converted into the more

desirable data coupling—accessing data through parameter passing.

The other problem is that two components that are not strongly related are in the
same module anyway—they are only weakly cohesive. This means that changing one
potentially impacts the other, and the effect may not be desired. To avoid propagating
the change to the other requires performing not only the initial change, but some com-
pensating change to undo the effect on the dependent object: again, updating a single

concept requires multiple updates. This false relationship can be eliminated by removing
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the offending grouping, abstraction, or deviation of the components.

To address these two problems, then, the transformations must modify structure by
creating, modifying, or removing syntactic constructs that implement these structuring
techniques. For example, in the transit example the extract-function transformation
created a procedure abstraction of the concept total-miles, which was implemented
by returning the miles-rolled variable. This localized the addition of ferry miles to

miles-rolled, since the only reference to miles-rolled was within total-miles.

2.4 Transformations

This section introduces the most useful of the transformations necessary to restructure
programs, and evaluates them with regard to the structuring criteria of the previous
section. Rather than give isolated examples of their use, most are used in two examples
presented after this section. The first shows how data representation transformations
can generalize a data structure, and the second uses control-oriented transformations to
relayer a Scheme matrix multiply program. These show how transformations are used
together to restructure. The matrix multiply example also will be used in Chapter 3 for

examining the qualitative differences between tool-aided and manual restructuring.

Moving an expression. Moving a program component is perhaps the most com-
mon transformation—usually as part of another transformation, but also on its own via
move-expr. When moving an expression, there are no compensating transformations,
just checks. In particular, the bindings of the variables referenced in the expression can-
not change; the movement will change the order of evaluation of some expressions, which
must not change the values returned from expressions; finally, the moved expression must
be evaluated in the same circumstances as before.

Moving an object closer to others, specifically when it is being moved between scopes,
is regrouping. Also moving an object next to another will allow them to be grouped by

another transformation.
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Renaming a variable. Transformation rename-variable takes a variable binding
and a new name, and renames the variable (and all its uses). The transformation must
check at each use that the name does not conflict with any existing names.

Renaming is important to structure, for example, because it may be desirable to
group two objects of the same name that previously were in separate scopes. One must
be renamed to make this possible. It was used in the transit example to give a more
precise name to the variable miles-traveled to reduce ambiguity with respect to other

names being used, such as ferry-miles.

Inlining an expression. The transformation var-to-expr basically inlines an ex-
pression, replacing the uses of a variable definition with the defining expression. The
engineer selects the assignment to be inlined and the tool handles finding and inlining
the uses. An alternative version of the transformation takes a single variable use and
inlines only the single use, not others from the same definition. Since the expression
is moving, it must satisfy all the conditions for a move to each of the variable uses.
Additionally, if the result will allow multiple evaluations of the expression, the transfor-
mation must assure that there are not side-effects in the expression (since repeating the
side effects could change the meaning of the program). Also, if there are multiple uses to
be inlined, the expression cannot, in general, have side-effects. Finally, if a use has two
potential definitions—this can occur with a conditional assignment—the transformation
is prohibited.

A more powerful version of var-to-expr is binding-to-expr. Given a variable
binding by the engineer, the transformation finds all the assignments to the variable
and performs var-to-expr on each. When this is applied to a function definition’s
parameter, the tool must check that all the calls of the function use the same expression
for the argument being inlined. This is because each call represents an independent
binding of the parameter, but when inlined all the binding expressions must be merged
into the one inlined expression.

Both versions allow specifying whether the variable binding should be deleted (if
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possible). The flexibility is important because it is not always clear that it should be
deleted. The engineer may have another use for the variable after the transformation is
complete.

Inlining removes abstraction. It generates multiple instances of the abstracted object,
allowing individual instances to be modified without affecting others. More specifically,
the version of var-to-expr that inlines a single use disassociates that variable use from
the others that get their value from the same expression evaluation. After applying this,
it is possible to change the inlined instance without affecting the other uses. The version
that inlines function bindings not only inlines the parameter, removing its abstraction,

but it also narrows the interface of the function abstraction.

Abstracting an expression. Given an expression by the engineer and a name and lo-
cation for a binding, expr-to-binding performs roughly the inverse of binding-to-expr,
moving an expression into a scope binding, assigning the result of the expression to the
new binding variable, and putting a reference to the variable in the old location of the
expression. As above, this can be successful only if the expression at the new location
would have the same value as in its original location. It also requires that the newly
defined variable binding not conflict with the scope of any existing bindings of the same
name.

This transformation has a broader impact when taking an expression from inside a
function definition and abstracting it as a parameter of the function. This means that
the removed expression must be passed as an argument to all calls on the function. The
value of this is that the resulting function is more general—different values other than
the original embedded one can be passed in newly added calls.

Abstracting an expression into a procedure binding has the added benefit of allowing
different expressions to be bound to the new variable, even though normal expression
abstraction disallows multiple expressions to be bound. This is because a procedure
disassociates its declaration of the computation from its execution, so its parameters

benefit similarly because their declarations are separated from their bindings.
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Extracting a function. The transformation extract-function turns a sequence of
expressions into a function, and replaces the extracted statements with a call on the
function. Again, this is a more general version of expression abstraction, however, since
a function can take parameters, any variables that would not be defined in the new
location can have their values passed in to the procedure as arguments. The engineer
provides the expressions, a name for the function, the expressions or variables to be
made parameters, the names of the parameters and the location of the new function.
extract-functionis implemented by first creating the function inline, and then doing an
expr-to-binding. For this transformation to succeed requires that the right parameters
get abstracted so that moving the function to a new location does not leave any free
variables.

This has the same benefits as expression abstraction, but with more potential for
reuse, and hence localization. As already mentioned, extract-function was used
in the transit example to localize the reference to miles-rolled inside the function
total-miles so that modifying miles-rolled to include ferry miles localized with
miles-rolled.

Procedure abstraction is reversible with inline-function, so it can remove unde-

sirable cohesion.

Scope-wide function replacement. This transformation scope-sub-call replaces
repeated sequences of the code of an existing function with calls on the function. This
is often used following function extraction.

To find the repeated codings requires a program equivalence test, which in general
is infeasible [Downey & Sethi 78]. However, there are conservative techniques that are
fast but can abstract away many anomalies [Yang et al. 89] (See Chapter 4.3). As a
back-up, an optimistic heuristic technique can be used, such as comparing the usage of
a candidate expression with the usage of the function that is being substituted. That is,
if each is used as the k" argument of a call on the same function, or at least if the uses

of each require the same type, then there is some narrowing of the search. Of course, an



34

optimistic heuristic result requires approval of the tool’s choice by the engineer.

Matching is also complicated by the fact that when trying to match a function to an
expression, the function’s parameters must be matched against actual code. That is, to
match a function to inline code, an inferencer must try to select which parts match the
function body, and which parts should be passed as parameters. The matching requires
some kind of logical inference, although this is not straightforward since two references
to a function parameter can have different values, due to side-effects. This means that
function parameters cannot be treated strictly as logical variables.

Scope-wide replacement requires user approval of each substitution also because two
semantically identical expressions do not necessarily mean that they represent the same
abstraction. For example, in the transit example, instances of miles-rolled were to
be replaced with calls to the semantically identical miles-traveled function. However,
the references to miles-rolled in the maintenance module were to remain unchanged,
since they did not (conceptually) represent total miles traveled, but only those miles
that resulted in wear-and-tear on mechanical components. This required allowing the
engineer to filter matches. Comparing the usage of matching expressions, as suggested
in the previous paragraph, works well here since semantically identical expressions that
are the same abstraction will tend to be used in a similar way.?

Scope-wide function replacement has the same localization benefits as function ex-
traction, but it can help recover structure after redundant coding has been introduced
already. extract-function can be used only to avoid redundant coding.

This transformation is a slight departure from the paradigm of local change by the
engineer compensated by the tool. There is no local change, and so there is no necessary
compensation—thus the need to prompt the engineer for each substitution. What is

really changing is the engineer’s perceived structure of the system and how it is best rep-

#Alan Demers (Personal Communication, 1991) suggested this technique for eliminating spurious
equivalent matches. The problem posed was removing the embedded uses of the file number 1 in C
programs. Since C programs use 1 for incrementing integers, incrementing structure pointers, and as a
file number for the standard output, there are too many matches for the engineer to interactively filter.
However, restricting the tool to selecting matches that only use the number 1 in write is sufficient to
differentiate those uses that should be abstracted as file numbers.
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resented. The tool helps by finding all the candidates and assuring that the substitutions

preserve meaning .

Adding reference indirection. There are also data representation manipulations,
such as aggregating a group of variables into a record, or changing a single variable into
a list of variables, and making the requisite updates to the uses of the modified struc-
ture. There are two such types in Scheme, vectors (arrays) and lists (linked lists). The
corresponding transformations are vectorfy-bindings and listify-bindings, which
take a name and a list of variable bindings provided by the engineer and create the
requisite object and replace the references to the old bindings with references to the new

structure.

The benefit of creating a record is its grouping effect—it explicitly joins the allocation

of previously independent elements, and gives them names that explicitly relate them.

Converting a scalar into a list—and later putting references to it in a loop—has the
benefit of allowing multiple instances of an object where before only one was allowed.
This is grouping, and abstraction as well, since any instance in the list can be used in

place of another.

Adding looping to list references. If a scalar variable has been converted into a
list with 1istify-bindings, it is often natural to introduce iteration over the list with
loopify to ease enhancing the list to contain multiple elements. Since the lists are
single-element, there is just one “iteration”, so meaning is not changed. loopify works

for vectors as well.

The benefit of this transformation is that it enhances the control structure to access

all the members of the group—Ilist—in sequence, rather than just a single element.
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2.5 A Data—Oriented Restructuring

This section highlights these last two data-oriented transformations. The tool commands
shown below are slight variations of the actual commands used in the tool; the variations
generally make the commands more readable by giving understandable names (shown
in <angle braces>) to program locations. The command syntax is Common Lisp, but
they could be expressed naturally as window- and mouse-based commands with a more
developed user interface. Omne peculiarity of Common Lisp is the use of keywords to
denote special parameters to a function. For instance, invoking

(move-expr e :before g)
means calling transformation move-expr with its first argument as e and its before
argument as g.

Below is a piece of a program that creates a picture element, puts it into a scene, and
then flushes the object to the screen. It is desired to enhance this code so that multiple

elements are displayed by this code.?

(let ((object (picture-element ’square)))
(put object world)
(display object world))

To allow multiple elements, first the scalar picture element is transformed into a list of
picture elements. The engineer executes the command (1istify-bindings <object binding> ’objects).
This transforms the 1et binding of object to be a list containing the original value bound
to objects, and the uses are changed to dereference into the first element of the new
list:
(let ((objects (list (picture-element ’square))))

(put (car objects) world)
(display (car objects) world))

*The Xerox Mesa MultipleInstance tool, for example, when given a tool rewritten in a particular style,
supports multiple instantiations of the tool, including process context switching, locking, and window
management. The process of modifying a tool to be acceptable to MultipleInstance requires, among
many other tasks, redeclaring the global variables so they are captured in a single record type so that
they can be instantiated multiple times in a list. The restructuring being performed here is essentially
this preparation, plus the addition of the looping.
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For listify-bindings to succeed, the name of the new variable objects must not
conflict with any existing variable name in the same scope. Although this particular
application of 1listify-bindings is not particularly global, in general it is applied in
the entire scope of the changed variable, which could comprise entire text of the program.

Now that there is a list structure for handling multiple picture elements, the engineer
can now transform the body of the 1let to be looped over so that all elements of the list

are automatically accessed. The tool user executes the command:

(loopify <objects> <body let> ’objs)
This transforms the body of the let to be a do loop over the body, with objects being
iterated over and objs being the name of the iteration variable. The result is:

(let ((objects (list (picture-element ’square))))

(do ((objs objects (cdr objs))) ; looping clause
((null? objs) (car objects)) ; termination clause
(put (car objs) world) ; loop body

(display (car objs) world)))

Now the code, which performs the exact same task as before, is much easier to modify
for adding multi-element function. For loopify to succeed, the new variable name objs
must not conflict with any existing variable in the same scope. Also, the list being looped
over must have only one value in it, because otherwise there would be extra iteration

that was not present before.’?

2.6 Restructuring a Matrix Multiply Program

Now to show how the remaining transformations are used, and give a better sense of how
restructurings are achieved, a matrix multiply program [Dybvig 87], shown in Figure 2.1,

is restructured. Matrices in this program are represented as lists of (equal length) vectors,

5The conditions stated for transformations are conservative, and often can be generalized to improve
the likelihood of successful transformation, without affecting correctness. The over-conservativeness
made implementation of the prototype simpler. For example, 1loopify could be made to work on multi-
element lists if the extra iterations cause no side-effects. In some instances here, the conditions stated
are simplifications to make the explanation easier.



38

although the representation is hidden from the multiplication function through the use
of auxiliary functions.

The restructuring centers around three local functions and an implicit, inlined func-
tion embedded in the main function. Extracting a form of these functions may prepare
for later functional changes or for reuse by other programs. The first two local func-
tions, matrix-rows and matrix-columns, respectively report the number of rows and
of columns in a matrix. The third local function, match-error, reports an error if
the two matrices do not match in size. This function also has an embedded constant
(*matrix-multiply) in it for reporting the name of the function that received the in-
correctly sized matrices. All of these functions, if at the top-level, could be reused to
implement, for example, a matrix-add function. Finally, the part of the inner loop of the
matrix multiply that computes the inner-product of a row of one matrix and a column
of another is an operation that could be extracted and invoked as a separate function.

The restructuring tasks are:
e Move the three local functions to the top-level.
e Remove the letrec that contained the local functions.

e Modify match-error to accept a parameter that is the symbol-name of the function

that received the mismatched matrices.

e Make the inlined inner-product function a callable, top-level function that com-
putes the dot product of a row of one matrix and a column of another. The
parameters to the function are to be the two matrices and the respective row and
column. The code in the inner loop that computes this in the original program is

to be replaced by a call to this new function.

The computer-aided restructuring of the matrix multiplication program is relatively
straightforward. The first step in the restructuring is to add a parameter to generalize
match-error. The command

(expr-to-binding <’matrix-multiply> ’header :scope <match-error>)
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(define 1+ (lambda (x) (+ x 1)))

(define make-matrix (lambda (rows columns)
(do ((m (make-vector rows))
(i 0 (1+ 1))
((= i rows) m)
(vector-set! m i (make-vector columns)))))

(define matrix? (lambda (x)
(and (vector? x) (> (vector-length x) 0) (vector? (vector-ref x 0)))))

(define matrix-ref (lambda (m i j) (vector-ref (vector-ref m i) j)))
(define matrix-set! (lambda (m i j x) (vector-set! (vector-ref m i) j x)))

(define matrix-multiply (lambda (ml m2)
(letrec
((match-error (lambda (whatl what2)
(error ’matrix-multiply "“s and “s are incompatible operands"
whatl what2)))

(matrix-rows (lambda (x) (vector-length x)))
(matrix-columns (lambda (x) (vector-length (vector-ref x 0)))))

(let* ((nr1 (matrix-rows mi))
(nr2 (matrix-rows m2))
(nc2 (matrix-columns m2))
(r (make-matrix nri nc2)))
(if (not (= (matrix-columns mi) nr2))
(match-error m1 m2))
(do ((i 0 (1+ 1)))
((= i nr1) nil)
(do ((j O (1+ 3§)))
((= j nc2) nil)
(do ((k 0 (1+ k))
(a 0 (+ a (* (matrix-ref ml i k) (matrix-ref m2 k j)))))
((= k nr2) (matrix-set! r i j a))
nil)))
r))))

Figure 2.1: The Initial Matrix Multiply Program
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extracts the *matrix-multiply constant from the original body and makes it a parame-
ter, named header, of function match-error, and updates each call on match-error to
pass ’matrix-multiply as a parameter. The command checks that the abstracted value
has the same value in its new context as it did in the old and that header is an acceptable
name in the scope created by match-error (that is, there is no existing parameter or
local variable of the error function with that name). In this case, the command succeeds

and transforms the match-error function to

(match-error (lambda (whatl what2 header)
(error header "“s and “s are incompatible operands' whatl what2)))

and updates the (only) call to

(match-error ml m2 ’matrix-multiply)

The second step is to move the three local functions to the top-level and to remove

the letrec that encloses them:

(move—expr <match-error> :before <matrix—mu1tiply>)
(move-expr <matrix-rows> :before <matrix-multiply>)
(move-expr <matrix-columns> :before <matrix-multiply>)
(ungroup <letrec>)

The first three commands check to make sure that there are no name conflicts in the
new scope; in this case they succeed and move the three functions to the top-level, in
front of the definition of matrix-multiply. The last transformation removes the now
empty and useless letrec from the body of the matrix multiply.

The last part of the restructuring, extracting the inlined inner product, is the hardest.
There are three impediments to performing the restructuring directly.

First, the variable nr2 is used in the inner product computation but is defined by
the enclosing main function; to allow the extraction of the inner product, the value of
nr2 must be made available in the newly extracted function. Second, the value that the
inner loop computes is stored in the variable r; it must be returned as the value of the

extracted function. Third, the inner product is not parameterized; before extraction, it
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must be explicitly parameterized by the two matrices (m1 and m2) and by the row and
column indices (i and j).

To handle the first problem, nr2 must be split into another equivalent expression

(called len):

(var-to-expr <second nr2 reference>)
(expr-to-binding <result of previous> ’len :scope <do>)

As before, the tool first checks that the new names will not conflict with others in the
designated scope and also that the recomputation of the binding produces the same
value as before, and causes no extra side-effects. The checks succeed, and the command

transforms the inlined inner loop of matrix-multiply to:

(do ((k 0 (1+ k))
(a 0 (+ a (* (matrix-ref ml i k) (matrix-ref m2 k j))))
(len (matrix-rows m2) len))
((= k len) (matrix-set! r i j a))
nil)

To handle the second problem, the independent part of the result expression must

be moved out of the enclosing do.

(pop-out <do> <a>)

This command moves the entire return result of the <do>, except for the second param-

eter (<a>), outside of the <do>.

(matrix-set! r i j
(do ((k 0 (1+ k))
(a 0 (+ a (* (matrix-ref ml i k) (matrix-ref m2 k j))))
(len (matrix-rows m2) len))
((= k len) a)
nil))

Now the inner loop can be extracted.

(extract-function <do> ’inner-product
:old-new-name-pairs ’(<mi> <i> <m2> <j>)
:before <matrix-multiply>)
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The parameter :old-new-name-pairs is the list of variables or expressions to be ab-
stracted as parameters to the new function. New names can be supplied as well, but
here are defaulted to their current names. Note that if the engineer had tried to apply
this transformation without moving out nr2 and the value of the computed inner prod-
uct, the tool would have aborted the extract-function transformation, returning the
error message:

Variables nr2, r would be unbound in new context.

This completes the restructuring of the program, which is shown in Figure 2.2 with

the unchanged functions omitted.

2.7 Summary

The key properties of transformations are that they preserve meaning and that globaliza-
tion of the engineer’s local change is achieved by the relationship between definitions and
uses of the object. For completeness, the transformations should span the syntax of the
programming language, for each syntactic form addressing the problems of poor coupling
or cohesion without changing meaning. Each of the transformations provided addresses
one of these two problems, and the affect of each on program structure has been shown.
Although not a complete set, the transformations provided have proven sufficient thus
far, successfully restructuring the matrix multiply program and other examples.

Note that the design of the transformations themselves apply the structuring tech-
niques from the taxonomy to derive one structure from another. For example, abstracting
a new parameter for match-error created a deviation from the original match-error,
but the original was destroyed in the process, requiring updates to the uses to preserve
meaning,.

Some transformations, although they do not appear to be restructuring qualitatively,
when put together achieve the goal of restructuring. The restructuring can be viewed as
an abstract diagram (See Figure 2.3), showing that hierarchical and grouping relation-

ships among components is substantially changed. A box, as an agent, can only see the
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(define match-error (lambda (whatl what2 header)
(error header ""s and ~s are incompatible operands'" whatl what2)))

(define matrix-rows (lambda (x) (vector-length x)))
(define matrix-columns (lambda (x) (vector-length (vector-ref x 0))))

(define inner-product (lambda (mi1 i m2 j)
(do ((k 0 (1+ k))
(a 0 (+ a (* (matrix-ref ml i k) (matrix-ref m2 k j))))
(len (matrix-rows m2) len))
((= k len) a)
nil)))

(define matrix-multiply (lambda (ml m2)
(let* ((nr1 (matrix-rows mi))
(nr2 (matrix-rows m2))
(nc2 (matrix-columns m2))
(r (make-matrix nri nc2)))

(if (not (= (matrix-columns mi1) nr2))
(match-error ml m2 ’matrix-multiply)
nil)

(do ((i 0 (1+ 1))

((= i nr1) nil)
(do ((j O (1+ §O))
((= j nc2) nil)
(matrix-set! r i j (inner-product mi i m2 j))))

r)))

Figure 2.2: The Restructured Matrix Multiply Program
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boxes immediately inside it. So on the left, there is only one top-level accessible box,

while on the right there are five.

matrix-multiply matrix-multiply [error | [rows | [col |

|err0r | |I‘0VVS | |COlS |

inner

Figure 2.3: Abstract view of matrix multiply’s restructuring

What is clear from this diagram is that four objects that were not externally accessible
before—all four obstructively grouped inside matrix-multiply and one of them not
abstracted—are now independent abstractions. The reusability of these four new top-
level functions is now much greater because they span a larger scope than one function.
As a secondary consequence, the internal structure of the main object is now simpler.

The next chapter presents an experiment that helps evaluate the benefits of tool-
aided restructuring, and provides insight on the validity of the tool’s mode of interaction

with the user.



Chapter 3

Tool-Aided versus Manual

Restructuring

The previous chapter introduced several meaning-preserving transformations that effec-
tively separated restructuring from other maintenance activities by making non-local
checks and changes to complement the engineer’s change. To evaluate this approach
to automating restructuring, a small, relatively informal experiment was conducted to
compare use of the tool to manual restructuring efforts. Six people were given the ma-
trix multiply program discussed in the previous chapter and asked to perform the same
restructuring. An observer watched each restructuring and afterwards interviewed each
subject about the process. The results were then compared with the same restructuring
as performed using the tool.

One goal of the experiment was to determine whether or not manual restructuring is
an error-prone activity. If individuals in fact have little or no problem in restructuring a
program by hand, then this is evidence that automating the restructuring process would
be of relatively little benefit. Alternatively, if individuals have difficulty with the actual
activities (independent of the subjective decisions about what to restructure), this would
provide increased motivation for computer-aided restructuring tools.

Another goal of the experiment was to see if the tool’s model is consistent with how
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engineers restructure manually. It is assumed here that the some of the best tools are
those that automate an activity that users already intuitively understand.! (As an exam-
ple, consider the success of make [Feldman 79]. As another example, consider the lack of
success of editors that are strictly syntax-directed.) By monitoring the way individuals
restructure a program, it was desired to either solidify or disprove the hypothesis that

the tool is natural to the way engineers restructure programs.

3.1 The Experiment

Fach subject was presented with the initial matrix multiplication program (Figure 2.1),
a description of the four goals of the modification (without using the word “restructur-
ing”) as described in Section 2.6 and the motivations for those goals. In addition, the
subject was asked to make “some attempt to assure that the modifications are correct;
that is, that the modifications have not changed the meaning of the program in any un-
satisfactory manner.” Provided were a small data file and a Scheme interpreter running
on a workstation that handles multiple windows.

After the restructuring, each subject was asked three groups of questions. For the
most part these can only be used to detect anomalies in the experiment and collect
interesting stories, since even apparently factual questions can have subjective qualities
requiring judgments that cannot be quantified. The first questions focused on the mod-
ifications themselves. Were they difficult? What were the specific impediments, if any,
to the modifications? How did you overcome these? Did you have trouble getting the
modification right? Was the cause syntactic or semantic? The second group of questions
focused on Scheme and Common Lisp programming ability. Do you regularly program
in Scheme? Common Lisp? How would you rate yourself as a programmer in these
languages? If you are a Common Lisp programmer, did programming in Scheme present

any problems? The final group of questions concerned familiarity with this restructuring

'Tt is also assumed, however, that tools with this property often end up being used in completely
unanticipated ways, which is one mark of an extremely successful tool.
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work. Have you heard or read about the work? Seen any presentations? Seen the matrix

multiply restructuring problem in particular?

The Common Lisp questions were due to the fact that most of the subjects were
proficient in Common Lisp rather than Scheme. Although the differences in Scheme and
Common Lisp were not significant for this small problem, it was helpful to observe that
a programming error was due to confusion about the syntax of Scheme, so as to not give

it too much weight in the analysis.

The experiment was introduced to the subject by describing what the program does
and how it is done. In addition, two subjects who normally program in Common Lisp
rather than Scheme were described the special characteristics of Scheme . (It turned out
that only one subject, #5, had ever programmed in Scheme, and that was a number of
years ago.) The observer then started the execution of the Scheme interpreter, with the

program in a separate window.

During each subject’s modifications, the length of the experiment, including the times
taken for editing, thinking, running, and debugging were recorded. Also tracked were
the order and kind of changes, whether code was copied or reentered, what errors were

made (and were they syntactic or semantic errors), etc.

Occasionally during the modifications, the observer would help the subject overcome
minor problems with differences between Scheme and Common Lisp. For example, the
headers of Scheme functions are slightly different from Common Lisp functions, and some

subjects did not notice this immediately by visual pattern matching.

All the subjects were graduate students in computer science. With one minor excep-
tion (accounted for by modifying the time taken to do the restructuring), the support

tools (editors, etc.) presented no problems to the subjects.

The results of the experiment are summarized in Table 1 and discussion of individual
subjects’ sessions are given next. (Most of the columns in Table 1 are self-explanatory.
The pretest column indicates whether or not the subject tested the original program

provided. The prior knowledge column indicates whether the subject had seen the ideas
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Subject Common Lisp Time | Pretest | Errors Prior
# Experience (min.) Knowledge
1 intermediate/advanced 20 Yes No Example
2 intermediate/advanced 20 Yes Yes None
3 intermediate 23 No Yes None
4 beginner/intermediate 19 No Yes Ideas
5 advanced 19 No Yes None
6 intermediate 19 No No Ideas

Table 3.1: Summary of Data

before, seen the example before, or had no knowledge at all of the work.)

Subject #1. This subject started by testing the initial version of the program. The
first change was to paste a copy of the error function at the top-level, modify the copy,
move back and update the invocation, and then delete the original. The subject then
copied versions of the matrix-row and matrix-column functions to the top-level, mod-
ified them, and then deleted the originals and the associated letrec from the main
function.

Next the subject typed a new top-level function definition for inner-product. The
body of the new function was pasted in using the code from the inner loop, and then the
names in the body were updated to match the parameters names in the new header. A
copy of the nr2 binding was pasted into the function. Finally, the matrix-set! fragment
was moved from the main function to the top-level function, and the associated call was
placed into the main function. The modified file was loaded and tested successfully.

This subject was the only one who had seen a discussion of the restructuring work

that had included the matrix multiplication example.

Subject #2. This subject started by pasting copies of the three local functions at

the top-level, immediately modifying them to become stand-alone functions. The sub-
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ject deleted and reinserted parentheses at the end of each of these functions, using the
editor to check that the parentheses were balanced. The subject next ran tests on the
original (unmodified) file. Then the subject deleted the original versions of the local
functions, and the enclosing letrec, from the main function and then tested this ver-
sion. The subject next added a parameter to the error routine, generalized the body to
use this parameter, and then moved to the call site and update the invocation of the
error function.

The subject then typed the preamble of the new top-level inner product function and
inserted a copy of the inner loop. The matrix-set! was deleted from the copy at the
new definition, the parameter names for the new function were updated, the call site was
modified, and the old loop was deleted.

When testing this version, a run-time error indicated that nr2 was undefined. The
subject first replaced the reference to nr2 in the new function body with a direct call
to the matrix-rows function, but then decided to insert a copy of the binding from the

main function. The program was loaded and successfully tested.

Subject #3. This subject started by moving the local functions to the top-level,
modifying them to be full-fledged functions. The subject then modified the header, then
the invocation, and then the body of the error function.

The preamble of the new inner product function was typed. The invocation of the
new function was then entered, the loop body cut and then pasted at the top-level. A
copy of the nr2 binding was added to the new function, and the invocation was cleaned
up. Then the subject searched for any remaining uses of nr2 in the main function to
determine if the original binding could be deleted.

Upon loading the file, the subject was notified that there was a syntactic error—an
extra right parenthesis—at a given line number. After checking a function that turned
out not to include this line number, the subject reloaded and the same error occurred.
The subject now found the error quickly, tested the new inner product function directly,

and then tested the final version of the matrix multiply function. The subject checked
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the results by hand, since the original version had not been tested.

Subject #4. This subject handled the inner loop modification first, starting by en-
tering the preamble and copying the inner loop (not including the do). The subject
replaced the use of nr2 in the new body with a direct call to matrix-rows, tweaked the
new body, moved to the main function to add the new invocation to inner product and
to delete the old loop.

The subject then added the parameter to the header and body of the error function.
The three local functions were then copied and pasted at the top-level, after which the
subject returned to the main body and deleted the original local functions and their
enclosing letrec. The subject loaded the modified file, testing the new inner product
function and then testing the main function.

When testing the error case for the main function, there was an error because the
subject had not added a parameter to the invocation of the error function. This was

fixed, and the program was reloaded and retested successfully.

Subject #5. This subject first moved the local functions to the top-level, including
the associated letrec. The header and then the body of the error function were updated.

Then the headers of the two other (now) top-level functions were updated.

The call site for the inner product was updated, and then the inner loop was deleted
and pasted at the top-level. The preamble was then typed, the nr2 binding was moved
from the main function to the new function, and the body of the new function was
tweaked. A copy of the nr2 binding in the new inner product function was made and
copied back to its original location in the main function, after the subject searched the
main function for other uses of nr2. The call site of the error function was updated, and
the modified version was loaded. There was a basic syntactic error in the header of the
new inner product function, which the subject fixed easily. The program was reloaded,

tested, and checked by hand.
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Subject #6. This subject started by moving the local functions to the top-level,
modifying the headers, and deleting the 1etrec. The subject then added the parameter
to the header of the error function, next modifying the body and then the associated
invocation.

The subject then made an aborted attempt at adding the inner product function,
returning to the original version using a backup file in the editor. The subject then
entered the preamble and then moved the inner loop (except for the termination return)
to the new function. The subject realized that nr2 was not bound in the new function,
added a parameter to pass the value, and changed the reference to nr2 to match the
parameter name. The termination return was then moved to the new function, and
the invocation was added in the main function. To determine the actual parameter to
associate with the added formal in the inner product function, the subject searched an
old version of the file. After including the proper expression for the actual, the subject

loaded the file and successfully tested, checking the results by hand.

3.2 Discussion

Overall, the study of the full transcripts of the modification sessions and the subsequent
interviews led to several conclusions about how people manually restructure and how

this relates to computer-aided restructuring.

Copy/paste and cut/paste. The first conclusion is that the subjects used a mixture
of the copy/paste paradigm (where a copy of the original source is made, moved, and
modified) and the cut/paste paradigm (where the original source is moved in its entirety).
In general, more subjects used copy/paste than cut/paste, but few of them were entirely
consistent.

The copy/paste paradigm is safer, since it anticipates the need for error recovery.
This helped Subject #5, for instance, when the first attempt at modifying the inner

loop was unsuccessful. Another advantage is that it can reduce the bookkeeping the
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programmer must do. For instance, Subject #6 used cut/paste and was driven to look
back at an earlier version of the file to see what the original statements had done; this
was not needed by the subjects who used copy/paste. On the other hand, cut/paste
is somewhat faster, since the engineer does not have to return the original location of
statements to delete them.

The tool gives the engineer the best of both copy/paste and cut/paste. In particular,
it is not necessary for engineers to protect themselves against syntactic and semantic
errors (although undo is still important; see Chapter 7.1). Also, the basic transformations
the tool provides seem natural to these paradigms, since they are used to move syntactic
units from place to place in the program, which matches the common “paste” part of

both paradigms.

People make mistakes. The second conclusion is that people make mistakes, even
with programs as small and as simple as this (it fits easily in a single window). Many
of the individuals made minor syntactic and semantic errors that the tool guarantees to
avoid. Although none of the individuals made deep “semantic” errors, this is likely due
to the small size of the program.

One cost of making errors during restructuring is that it increases the time to do
the restructuring. The most costly error was the syntactic one (unbalanced parentheses)
made by Subject #3. The debugging process, including two unsuccessful and one suc-
cessful loads, took just short of five minutes (over 20% of the total time), and accounts
for this subject taking the longest of all. Although Subject #3’s case was extreme,
even small activities like Subject #2’s deleting and reinserting parentheses to check for
balance adds costs in the long run. (This subject’s activity also points out that engi-
neers are generally happy to rely on tools—in this case, the editor—to guarantee certain
properties.)

Some of the errors made by the subjects would have been fixed automatically by
the tool, such as the parameter mismatch by Subject #4. Others, such as the syntactic

errors, would have been prevented. For others, the tool can help guide the engineer
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by pointing out potential problems. For instance, when Subject #2 moved the form
containing nr2 to the top-level, the tool would have returned an error indicating the
problem and would have prohibited the movement until a compensating binding was
inserted.

The cost of avoiding errors during restructuring cannot be ignored either (See Chap-
ter 1.4.2). In manual restructuring, the engineer bears these costs, checking for name
conflicts, preservation of value flow, updating of use sites, etc. Computer-aided restruc-

turing fully relieves the engineer from these tedious and conceptually unimportant tasks.

Manual restructuring is haphazard. The third conclusion is that manual restruc-
turing is haphazard compared to the computer-assisted process.

One example is the way the subjects handled the update of definitions and use sites.
All but one of the subjects (#5) changed the definition and then the associated use
sites. However, even the more methodical subjects (who, for instance, updated all the
interfaces and then fixed all the uses) seemed to focus locally without a generally good
sense of the global aspects of the process. For example, Subject #6 deleted the nr2
binding from the main function, and then later checked to see if it had been used in
that function (other than in the inner loop). Indeed it had, and the binding had to
be reinserted. The same subject also separated the updates of the definition and the
use by over seven minutes, about one-third of the total restructuring time. As another
example, Subject #4 forgot to update the uses of changed definitions, finding out the
problem when the program was executed.

One reason for some degree of complexity in the process of even the more methodical
subjects might be the tendency of engineers to edit locally. That is, when an engineer is
making changes in one part of the source, it is tempting to make other nearby changes,
even if they are not semantically linked to the first set of changes. The temptation arises
in part because a semantic change (such as generalizing the error function) is necessarily
global, requiring that the function header, the function body, and all the use sites be

updated. (This example only has a single use site, and the temptation to decrease
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editor motion would likely increase if there were multiple use sites.) This style of editing
necessarily introduces some complexity and potential for error, since the engineer’s mind

must store a rich context for the collection of ongoing changes.

Tool support for automatically handling non-local change promises to significantly
decrease this problem, since the engineer makes the change in one location and the rest
are updated without added navigation through the program. By linking the modification
of the use sites and of the definition site, the potential for making errors (modifying one
without the other, or of updating them inconsistently) is eliminated. The tool simplifies
the engineer’s process from “change definition and then change all uses” to “change
definition”.? Since this new process is a subprocess of the original one, rather than an

new process altogether, it is all but guaranteed to be natural to the engineer.

Another example of haphazard process is the way the subjects handled testing. Over
half the subjects did not pretest the program. They later realized that they had to
check the final restructured program by hand. Their tests, then, only ensured that the
resulting program computed matrix multiplication, but not that there was any functional
relationship between the initial and the resulting program: they only had the observer’s
word that the initial program in fact properly computed matrix multiplication. That
is, they could not, as had been prescribed, make an effective effort to assure “that
the modifications have not changed the meaning of the program in any unsatisfactory
manner.” A ramification of this is that the subjects were, in essence, unable to distinguish

between restructuring and functional enhancement.

To paraphrase Dijkstra, testing can be used to show the absence, but not the pres-
ence, of equivalence after restructuring [Dijkstra 72]. In contrast, use of a restructuring
tool that preserves meaning relieves the engineer from this concern and responsibility.
Of course, the tool itself is not, of course, guaranteed to be free of errors. But as DeMillo,

Lipton, and Perlis noted, confidence in a tool is in part a social process [DeMillo et al.

21t may be possible to define a transformation that permits the engineer to modify a use site and to
use that to update the definition and the other associated use sites. The potential conceptual difficulty
is in properly computing the appropriate actual parameters at the other use sites.
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79]. There is no reason to believe, however, that restructuring tools cannot gain from
engineers the same degree of confidence as compilers have. If and when that stage is
reached, the tool will be one of the last places to look if there is an error in the restruc-
tured program. It is critical to remember, of course, that the tool does not guarantee
that the restructured program is correct with respect to a higher-level specification, but

only that it is equivalent to the initial version of the program.

3.3 Conclusions

The experiment was limited in several ways. The primary limitation is that even if
the results validated the benefits of tool-aided over manual restructuring, this does not
directly indicate that it helps address the long-term objective of reducing the costs of
overall software development and maintenance. The reason for this is that the changes
requested in the experiment retained functional equivalence of the program, so no direct
understanding of the effect on functional changes is gained. The other limitations are that
the number of subjects was small, the restructuring of only one program was studied, the
experiment was not replicated, etc. Despite these limitations, however, the experiment
is a useful step in evaluating whether tool-aided restructuring is worthwhile.

The first goal of the experiment was to increase understanding of how a restruc-
turing tool in the style of the one described earlier affects process. The central lesson
from the experiment is that a tool like this promises to make the restructuring process
more methodical, allowing the engineer to focus more clearly on the difficult, aspects of
modifying software that require human judgment. Other important lessons include the
simple but useful ability to eliminate some classes of errors during restructuring and to
relieve the engineer from the need to manually perform critical activities such as testing.

The second goal of the experiment was to see if the tool’s model was consistent
with how engineers restructure manually. The experiment did increase confidence in this
dimension. Each operation applied during the tool-based restructuring is a direct analog

to collections of operations that essentially all of the subjects performed.
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One deviation from the model was that the subjects tended to use copy/paste and
cut/paste before editing the text being pasted. This meant that, for example, the initial
version of the inner product function had the nr2 reference and the embedded set of r in
it. This was then refined down to the correct form. This is slightly contrary to the ap-
proach encouraged by the tool, which prohibited this approximate-and-deviate approach
to restructuring. Both the experiment and the taxonomy of structure in Chapter 2.3
imply that it will be fruitful to explore these more forgiving transformations.

In fact this approach is not contrary to the model per se, but is more a feature of
the individual transformations, and has been implemented for extract-function. For
extract-function, approximate-and-deviate for extracting the inner product without
first repairing the text to be extracted would automatically add parameters for nr2 and
r in the interface of inner-product. The engineer would then refine inner-product by
applying meaning-preserving transformations to remove the extra parameters. A benefit
of this approach is that the structural inconsistencies are explicit as extra parameters to
inner-product.

Even this small experiment is convincing that the basic concept of computer-assisted
restructuring is a potentially valuable approach to reducing the overall costs of software
evolution. Several investigations are suggested. Improving the user interface is one path
to explore. Another is to attempt more experiments: repeating this same experiment on
a larger sample size; using a different restructuring ; and perhaps most important, an
experiment that asks subjects to make a functional change rather than simply restruc-
ture, with the intention of learning more about to what degree programmers separate

the restructuring and maintenance processes.



Chapter 4

A Model for Global Program

Restructuring

A critical aspect of the transformational approach to global restructuring is ensuring
that a transformation preserves meaning. A model of global restructuring is needed to
help reason about and implement meaning-preserving restructurings.

Intuitively, a meaning-preserving restructuring cannot affect the values that would
be consumed or produced by an expression during program execution, since this would
change the behavior—the meaning—of the program. There are two aspects to this.
One is the production—consumption relationship of values between expressions during
execution, often caused by the store of a value in a variable by one expression and the
subsequent fetch of the value from the variable in another expression. The other aspect
is the identity of the operations themselves—in general, an operation in the program
cannot be changed since, when executed, the values produced by the new operation
would be different than before. Together these two properties represent the stream, or
flow, of values between operations during execution. To preserve meaning, then, the
restructuring tool identifies the flows from the expression being changed and applies
compensating changes to assure that the flow will be preserved. For example, when the

parameters of the function push are swapped (Recall Figure 1.1), the need to update the
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calls on push is inferred by the flow of the procedure value to each call point.

Abstractly, such a transformation, ép, is a function from source programs to source
programs, P o, pr, However, the common computer representation of programming
language syntax, the abstract syntax tree (AST), does not efficiently represent all se-
mantic properties for preserving meaning, such as the producer—consumer relationships
between operations. This is due primarily to the implicit references to variables through

pointers, procedure call, and side-effects (See Chapter 1.6).

P m WG P m ne L G

op bg op bg op|l——m || dg
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P Q' P’ e’ P el

(a) (b) ()

Figure 4.1: Diagrams of transformation (dotted arrows are implied mappings)

On the other hand, the producer—consumer relationship between operations is con-
veniently represented by the property of dependence [Podgurski & Clarke 90]. The
Program Dependence Graph (PDG) [Kuck et al. 81][Ferrante et al. 87] explicitly repre-
sents dependences between the operations of the program. Essentially, a PDG is a graph
with the vertices representing program operations, and the edges representing the flow of
data and control between operations. One way the PDG could be used for transforma-
tion would be to translate the program into its PDG form, perform the transformation,
and then convert it back to program form, as shown in Figure 4.1a. This allows using
the nice mathematical properties of the PDG for reasoning about the correctness of the
implementation of the transformation function, as well as for the efficient application of

semantically-oriented algorithms.

However, the nature of the effects on the resulting program cannot be ignored. In-



59

tuitively, the PDG is a directed cyclic graph, but the AST is constrained to a tree
structure: the PDG is syntactically a more general representation. Transforming a PDG
in absence of constraints from the original program threatens to produce restructurings
that cannot be represented as programs, or are not exactly what the engineer applying
the transformation had in mind. For example, the PDG removes inessential sequen-
tial execution relationships present in the AST. Thus, when unparsed, two semantically
unrelated statements can be placed arbitrarily with respect to each other, which will
be confusing to the engineer. Although this problem can be reduced by constraining
the ordering of unchanged code to remain unchanged,! the constraints on the layout of
transformed code cannot be so easily stated. Likewise, the PDG collapses scopes from
syntactically permitted relationships to actual semantic relationships. For example, if a
program statement does not use any variables defined in its immediately enclosing scope,
it may be unparsed into a location outside that scope. However, this statement originally
may have been located in this scope for purposes of a future enhancement that will use

its variables.

From a performance standpoint, the time required to unparse the PDG after each
transformation must be considered, since the programmer cannot be expected to re-
structure the PDG directly. PDG unparsing is in NP, although in practice this is not
considered to be a serious problem [Horwitz et al. 89]. However, even a linear algorithm

(the quickest possible) may be a problem if rapid restructuring is desired.

Performance and the dependence on the original syntax of the program imply that the
AST must be the core program representation that is manipulated by the programmer
and the tool. Thus the requirement to not arbitrarily reorder statements is enforced
by designing transformations for the AST, and the PDG is used only as a notation for
showing that transformations preserve meaning and also in the tool for quickly retrieving

needed dependence information. Since scoping impacts the PDG, a notation called

!This constraint is applied for ordering statements in program version merging [Horwitz et al. 89],
and is implemented using maps between the PDG and AST (Susan Horwitz, Personal Communication,
1991) similar to those discussed in Chapter 5.3.
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contours is derived from the AST to help reason about transformations in the PDG. The
commutative diagram in Figure 4.1b is suggested, with the PDG G’ being reconstructed

from P’ after ép is performed.

This approach, however, will be unacceptably time-consuming if ég is not actually
performed (See Chapter 5.6). If both ép and 8¢ exist for a particular transformation,
then each representation can be updated by its own transformation procedures, yielding
efficient updating of both the AST and PDG. This is visualized in Figure 4.1c, with
(a now overloaded) m mapping the application of ép on program P to the isomorphic

application of g on G.

There are two practical difficulties in mapping transformations between representa-
tions. First, in meaning-preserving source transformations are global and thus difficult
to reason about. This requires a way of breaking the global transformation into lo-
cal parts. Second, a way of relating a change in one representation to a change in
another is required. To address these needs, an equation called the globalization equa-
tion is defined for designing a correct AST transformation. It defines how several local
AST transformations are composed—with relationships derived from the PDG—into a
meaning-preserving global transformation. Also, by defining a small set of local substi-
tution rules on the PDG that preserve meaning, it is possible to reason locally about
the equivalent—but textually distributed and implicitly related—changes in the AST. In
the process of applying the substitution rules to show an AST transformation preserves

meaning, its corresponding PDG transformation is derived.?

Although the approach is not rigorous, it has been a practical aid in designing and
implementing the tool and its restructuring transformations, which are described in the

next chapter. Potential improvements to the model are discussed in Chapter 7.5.

2 Although the focus here is on the AST and PDG, the Control Flow Graph (CFG) (See Chapter 5.3)
underlying the PDG plays a role as well, since it represents the sequential execution relationships of the
program well, which the AST and PDG do not. These are used for checking that moving expressions in
the AST does not violate any relationships in the PDG. However, this role is not as significant as the
AST’s and PDG’s roles, and the relationship between the AST and CFG is straightforward, and so the
CFG is not discussed here.
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4.1 The Program Dependence Graph

The PDG explicitly represents the key relationship of dependence between the operations
in the program. Simple graph algorithms and set operations can extract this information.
Another advantage is that the PDG has been a popular program representation for aiding
program parallelization [Kuck et al. 81]|[Larus 89], optimization [Ferrante et al. 87],
slicing [Ottenstein & Ottenstein 84][Horwitz et al. 90], and version merging [Horwitz
et al. 89]. This extensive body of knowledge, combined with the right semantic support,

make PDGs a good foundation for preserving meaning during restructuring.

4.1.1 Definition

A program dependence graph is a set of vertices that represent the primitive operations
in the program, and a set of directed edges that connect the vertices. An edge typically
represents the flow of data or control between two operations, and is called a dependence.
An edge e representing the flow of data between two operations u and v is called a flow-
dependence, and is denoted e = FD(u,v). If the data flow dependence is due to a
variable s being set in u and used in v, the edge is labeled by the variable definition
carrying the flow, es = FD(u,v)s. An unlabeled flow denotes direct transmission of
the result of u to » without a program variable, as in Figure 4.2 where the if vertex
consumes the value from the < vertex. A control-dependence edge represents an on—off
switch for its destination vertex. Its denotes the success or failure of the conditional
operation of the predicate vertex (typically denoted by the symbol p) at its source, such
as an if vertex in the PDG. A control dependence edge is labeled true or false to denote
whether the destination vertex is activated on success or failure of the predicate vertex.
Thus a true branch of predicate vertex p to v is denoted C' D(p, v)trye. By definition, in
the program only one of the paths of control denoted by etrye or e, can executed on
evaluation of the program predicate denoted by p.

Some operation vertices generate a constant data flow-dependence (such as the value

1). In Figure 4.2 and others, to avoid cluttering they are denoted as a constant value
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on the flow-dependence with no source vertex. Another special class of vertices are the
input and output vertices, which denote the read and write statements of the program.
These are different from other vertices because the value on an output edge is not entirely
dependent on the values on the input edge. To treat this property conservatively, input
and output to files is treated as reading and writing a common global variable (i.e., the

file system).

A PDG may also support some additional edge types: anti-dependences, def-order
dependences, and output dependences. Each, for a different case, implies that the source
vertex is necessarily executed before the destination vertex in the program, even though
there is no explicit flow of data or control between them. The PDG representation used
in the prototype [Larus 89] has anti-dependences (edges denoted by AD in Figure 4.2)
and def-order dependences [Horwitz et al. 88] (denoted by DO).

An anti-dependence relates a vertex u, retrieving from variable z to a subsequent
vertex doy defining the same variable, if the definition can overwrite a prior definition
dix for u,. It is said that dix reaches u,, and wu, reaches doy. The anti-dependence
AD(uy,dsy) asserts that u, must be executed before dax so that the original value
stored by dy4 is not overwritten. In other words, when manipulating the source program,
the expression containing the use should not be moved after the expression containing
the subsequent definition. In the example above, there is an anti-dependence carried
by variable x, from the expression y := x just after the conditional to the expression
following it. This prevents a simple swap of these expressions. However, if all the prior
x definitions flowing to the use of x—in this case the first expression in the example and
the true branch of the conditional—are moved with the use, they overwrite all other

definitions before they reach the use, so the move does not change the meaning.

Output dependences are analogous to anti-dependences, but for definitions reaching
definitions rather than uses reaching definitions. As with anti-dependences, they are
useful for checking if it is legal to move an expression. In Figure 4.2 there is an output

dependence carried by variable x between the assignments in the initial definition x :=
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1 and the last expression, x := 0. Qutput dependences are not directly modeled in the

representation used in the prototype, but are dynamically computed as needed.

A def-order dependence asserts that two definitions of variable x dix and dyy both
have a flow-dependence to the same use uyx, but that if doy is executed it overwrites
(kills) dix. This implies that the two definitions cannot be under the same control
dependence predecessor, such as the opposite arms of the same conditional expression.
Def-order dependence is like output dependence, but it excludes unconditional kills of
definitions [Horwitz et al. 88]. In Figure 4.2 there is a def-order dependence from the
initial definition x := 1 to the definition of x := 2in the if-then clause, since (1) they
both can reach the use of x, y := x, directly after the conditional, but (2) the second

definition conditionally overwrites the first definition.

It is useful to know whether a kill is conditional because an unconditionally killed
dependence has no semantic relation to subsequent variable uses, while a conditionally
killed definition shares a use with the killing definition. In other words, it is not possible
to syntactically separate one definition’s uses from the other’s. For example, reversing
the order of two def-order definitions will result in a different value overwriting the first
definition before being accessed by the shared use, which cannot preserve the behavior
of the program. On the other hand, reversing two output dependent expressions (that
are not def-order dependent) will not affect the meaning of the program if all of the uses
of the second definition are moved before the first definition, and other dependences are

preserved.

A dependence can be further classified as loop-carried [Horwitz et al. 88], meaning
that the dependence arises only if a loop body is iterated more than once. This clas-
sification determines if a two vertices are dependent on the first execution of a loop (a

normal dependence), or in subsequent iterations (loop carried).

Procedures are treated as individual PDGs that are linked by calls. Unconditional
control flow dependences are used for the transfer of control, and data flow dependences

represent the passing of call arguments and return values. This is similar to the System
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local x :=1
begin =
local y

if x < 5 then
x:=3+1
eng 1= x

Figure 4.2: A program and its program dependence graph

Dependence Graph representation [Horwitz et al. 90], but does not remove spurious
transitive dependences due to call sites sharing the same entry and exit to a proce-
dure’s PDG. The presence of pointers in Scheme makes the analysis to remove spurious

dependences difficult.?

4.1.2 Additional Terminology

To describe some semantic relationships between vertices in the PDG requires some
additional notation (taken in part from an investigation on computations on def-use
graphs [Podgurski & Clarke 90]). This notation will also be used to describe changes to
the PDG.

3S. Horwitz, Personal Communication, 1990.
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For two vertices u and v, uZv means that they contain the same operation. When a
vertex is ezecuted, actually the execution of the corresponding operation in the program
is implied. Likewise for other operational terms applied to the PDG. The behavior
or meaning of a PDG is the behavior or meaning of the program that it denotes. In
particular two PDGs have the same meaning if their respective programs have identical
input—output pairs for all defined inputs.* Stated slightly more optimistically, a PDG
G' derived from G preserves the meaning of GG if G' has identical behavior for all defined

inputs for G. This allows G’ to be defined on inputs for which G is not.

If there is a dependence edge e = (u,v), then v is a successor of u, and u a predecessor
of v. A traversal in a PDG from v, to v, via dependence edges can be described by an
ordered list of the visited vertices called a walk, W = vyvq...v,. By using a variable
subscript on a vertex or walk symbol, several walks are described concisely. For example
W; = wuwv; describes all the walks from u to its immediate successors. The v; also may
be listed explicitly with braces: W; = u{vy, vq,...v,}. If two vertices, v and v have the
same variable subscript, in a walk description, the variables are assumed to be the same.
Thus walk z;y; denotes the walks {191, z2¥2, ...2,¥,}. The notation p* denotes that p

is a successor of itself, and denotes all walks with zero or more visits to p.

Walks extend to edge visits as well. Given vertex walk W = wqwy ... w,, then the
edge walk £ = ejey...e,, demonstrates W, given that Yw;, 0 < 7 < n, Je; = (w1, w;).
Edge and vertex walks may be interleaved to describe the exact path traversed on a
walk. Thus W = wgejwieq ... w, is a traversal of the graph such that e; = (wg, w1),

and so forth.

Informally, a vertex u is semantically dependent on v if for some input to v, the value
of u is influenced by v. The PDG captures conservative versions of semantic dependence.
Two vertices z and y are directly dependent if there is a control or data flow-dependence

edge (z,y) in the dependence graph. Vertices z and y are flow dependent if there is a

*This precludes ascribing meaning to the running time of a program. Although running time is a
critical semantic property of real-time systems, this complication has not been considered at this stage
of the research.
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graph walk W such that zWy, but including only data and control flow-dependences.
The other edges are excluded because they do not represent the flow of values or control
in the execution of the program.

For the design of the PDG used in this thesis [Larus 89], flow dependence is the
same as strong syntactic dependence (SSD) [Podgurski & Clarke 90]. If a vertex u is
SSD on v, then uw may be (is likely to be) semantically dependent on v. However, there
is also a case in which a semantic dependence is not SSD. In particular, if a loop or
recursion does not terminate, then the code after the loop (in the sequential execution of
the program) is never executed. So although the loop may not have any visible control
or data flow dependences to this subsequent code, it still affects it. This weak control
dependence combined with SSD is called weak syntactic dependence (WSD) [Podgurski
& Clarke 90]. WSDs are not checked in the tool transformations because changes to
termination properties are avoided.® Flow dependence is of interest, for example, when
considering a mutation to an expression. Walking the flow-dependences from the mutated
element reaches all the (strongly) affected parts of the program [Podgurski & Clarke 90].
Walking flow dependences backwards from a component yields its (strong) slice [Weiser

84][Horwitz et al. 90][Podgurski & Clarke 90].

4.2 Contours

Contours are an abstraction of the essential semantic properties that the AST repre-
sents in an efficient and complete form, but the PDG does not. The PDG does not
represent all the syntactic properties of a program, and these are important for suc-

cessful source-to-source restructuring. For example, changing the PDG to reference a

5 Although transformations cannot change the termination properties of a program, a transformation
may change the output behavior of a non-terminating program by moving an expression from before a
non-terminating expression to after it, or vice versa. Theoretically, however, the meaning of the program
is undefined in either case, so the meaning is not changed [Hoare et al. 87]. In the case that the program
is not supposed to terminate, such as an operating system, the infinite loop has a visible external behavior
(I/0, that is), so an expression cannot be moved over this loop if it will have any impact on the program’s
behavior (such as changing the order of I/O operations). In any event, if it was desirable to handle WSD
the dependences could be appropriately extended.
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new variable may preserve meaning in the PDG, but not in the program if the new
variable has the same name as another variable in the same scope. Most previous appli-
cations of PDGs have not required preserving scope properties because they are either
non-manipulative [Weiser 84] or the source is not being manipulated, such as in pro-
gram optimization [Ferrante et al. 87] and parallelization [Larus 89]. Program version
merging—a less constrained domain than program restructuring, since the meaning of
the merged program will usually be different from the originals—uses unparse techniques
to rederive the source representation, but it can fail because the merged PDG cannot

always be unparsed into a legal program [Horwitz et al. 89].

Scoping is the most semantically critical syntactic property. Other syntactic prop-
erties are important, too, but are much more static or are captured more readily in
the PDG. As an example of a static syntactic constraint, a typical programming lan-
guage like Scheme does not support return of an expression’s result to more than one
expression. The destination is determined by the child-to-parent relationship, and an
expression has only one immediate parent. The (illegal) change in the PDG that could
imply such an illegal structure—modifying a vertex to have two unlabeled successor data
flow-dependences—is simple. However, the syntactic constraint is also easy to check and
enforce in the PDG; a check of the successor edges of a modified vertex is sufficient.
On the other hand, in the PDG it is not so easy to prohibit a change that yields two
variables of the same name in a scope, since storage is abstracted away as the direct

communication of values between operations by data flow-dependences.

By adding scoping constraints to manipulations of the PDG, preserving the meaning
of the program can be assured. The AST, the common hierarchical representation for a
program in programming tools, readily represents scope structure. This scope structure
can be abstracted as a concept called contours, which suggests the hierarchical stacking
relationships of nested scopes. Given contours and a way to relate components in the
AST and PDG, the two representations can be combined into a single formalism to

reason effectively about both flow-dependence and scope structure. Together these enable
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reasoning about moving an expression with regard to both the reordering of expression
evaluation, explicit in the PDG, and its ability to access the variables it needs, which is
revealed by contours.

This relationship between a scope binding and the references on that binding is called
scope dependence. As with the other kinds of dependence, it is important to preserve
scope dependence during transformation. In particular, a data flow-dependence carried
by a variable cannot be preserved if the variable’s scope dependence is not. Hence, a

data flow-dependence is called consistent if it obeys scope dependence.

What a scope contains is defined by the hierarchical relationships in the program
text, which is captured precisely by the AST. For example, in Figure 4.3 the local y
declaration in the program text is visible to only the expressions following it in the same
begin-end declaration. Without loss of generality, assume that there is only one local
y declaration per begin—end declaration. Global declarations represent the outermost

scope of the program, and are declared at the root of the AST.

local x ;=1 / \

begin local begin
ﬁ)cal y .,/ | '|/ \\_ N -
if ); :<:52then = /_\ ’/oca /| N /_\ /_\
y =X x 1 'y < then y X X 0
x:=0 ¥ \ \ _

end X 5 /- \

Figure 4.3: A program and its abstract syntax tree

In the AST for the program on the right, this is captured by the parent and child relations

in the program. In particular, the y binding cannot be visible to an expression unless a
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single step up, followed by any number of steps down, can reach the expression. This is

captured in the following:

Definition 1 (Containing Contour) For expression e and variable binding declara-
tion by in an AST, if
e € children™(parent(bx))

then contour by contains e, or contains,s (bx,€).

Containment in block-structured languages is not sufficient for a reference to a variable
named x in e to actually reference by. If there is some other declaration of x containing
e but closer than by, then this other declaration is the (unique) defining binding for e.

More formally,

Definition 2 (Defining Contour) For AST binding by that contains expression e, by

defines x for e, or e€ by, if by does not contain any by’ that contains e.

Intuitively, a contour that defines a variable for an expression supplies the storage
for that variable. In Figure 4.3 the storage for the assignment to the y reference just
after the conditional is supplied by the local y declaration above it, since according to
the definitions local y defines y for that assignment.

For PDGs vertices to be related to contours, they must inherit the notion of location
(i.e., parent, child, and sibling syntactic relationships) from AST vertices. Locations are
assigned to PDG vertices by mapping them to the AST through the one—one correspon-
dence between primitive operations in the AST and the PDG. This relation is defined
by the functions m and m~!, which map a vertex in the AST to a vertex in the PDG
and vice versa. Since PDGs lack variable bindings, the PDG vertex that corresponds to
the initialization (i.e., the first set) of a variable is used as the representative binding
declaration. Thus, m(bx) = dx, where dx is the first set of variable z. So given dy,
and another PDG vertex v, their contour containment and membership operations are

defined in terms of the AST definitions:
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containsyiy(dg,v) = contains,s(m™(dyx), m™1(v))
VEpdg dx = m_l('v) East m_l(dx)

Now it is possible to check whether a dependence edge is consistent with the contours
of the program. An inconsistency occurs if a vertex is moved out of the contour that
defines one of its variable references. To check this requires verifying the following

property for each predecessor and successor edge of the moved vertex:®

Definition 3 (Contour-Consistent Dependence) PDG edge ex = (u,v) is consis-

tent if u,v € by.

Figure 4.4 below superimposes the containment contours for the scopes of x and y
in the program. The vertices within the box labeled y are contained in the y contour.
Likewise, the vertices within the box labeled x are contained in the x contour. This
includes the vertices within the y contour. However, if there were another x contour
within y’s—due to a scope declaration within the scope of y—the vertices within that
contour would not be members of—defined by—the outer x contour.

The key relation is the defining contour, but when moving vertices the containment
relation remains important because its default properties (determined by nesting) must
be used to recompute defining contours. Thus the containing relation must be available

as the primitive contour relation.

4.3 Meaning-Preserving Graph Transformation Rules

Since PDGs locally and explicitly represent dependence, and contours are relatively easy
to impose upon them, the PDG is used as the primary notation for reasoning about
the correct design of meaning-preserving transformations. Meaning-preserving changes

to the PDG are described by and constrained to a small set of substitution rules that

6This check does not catch an inconsistency if a vertex sets a variable that is never used, but to catch
this case the check can be generalized to examine vertices.
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local x ;=1 y
begin
local y
if x < 5 then =
X =2
y =X
x:=y+1
end

Figure 4.4: A program and its PDG overlaid with contours

preserve flow dependence and scope dependence, and do not change the operations in
value-changing vertices. Preserving dependence between two vertices preserves the se-
mantic link between them. Not changing the mutating operations preserves the actual
values passed along the preserved dependences. This approach does leave the opportu-
nity to make changes to the graph that preserve meaning—and restructure the program.
For example, it is possible to add an assignment vertex that transitively transmits val-
ues without changing them. Such a change, for instance, is the first step to allowing
inlined text to be extracted into a procedure: its parameters are passed by a transitive
assignment.

This notion of equivalent meaning is rigorously applied by the Sequence-Congruence

algorithm of Wuu Yang [Yang 90], which computes equivalence classes of equivalent
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programs or subprograms. Members of an equivalence class, when given identical inputs,
terminate with their visible variables in the same state. Although Yang’s definition
of the Sequence-Congruence algorithm uses a variant of the PDG called a Program
Representation Graph (PRG), it still applies to PDGs when appropriately modified. The
key difference between the PDG and PRG is that the PRG uses normalized variables in

the style of static single assignment (SSA) form [Cytron et al. 88].

Yang’s algorithm determines the equivalence of two PDG components based on three
properties, (1) the equivalence of their operators, (2) the equivalence of their inputs, (3)
the equivalence of the predicates controlling their evaluation. The algorithm likewise
proceeds in three steps: partitioning the vertices into sets of equivalent operators, refining
the partition with respect to data dependences, and refining the partition again with
control dependences. All vertices in a partition have the same behavior. A valuable sub-
case of sequence-congruence is data-congruence, which is the property that two vertices
in the same partition have after just phases (1) and (2) are completed. The algorithm
can be extended by using a special rewrite pass to handle the transitivity of assigning
one variable to another [Yang 90, p. 62]. The extension is necessary because the basic

algorithm does not recognize assignment as an operation.

By definition, subgraphs of a PDG may be modified by the substitution of sequence-
congruent vertices without changing a PDG’s meaning. For example, a vertex and its
incoming edges can be replicated (by definition being sequence-congruent), and the out-
going edges split between the two copies [Allen & Cocke 72]. Thus PDGs can be trans-
formed by performing replacement of sequence-congruent vertices in the PDG. This is
the technique applied in this thesis for restructuring transformations. The replacements
used are described below by a small set of PDG subgraph substitution rules motivated
by sequence-congruence. As described above, source-to-source transformation is the ul-
timate goal, so a group of substitutions are allowed only if they can be correctly mapped

to a syntactically legal program.

First presented are the rules that are implied by sequence-congruence, and then two
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for scope contours. Together these rules describe legal changes to a PDG, constrained by
contour consistency so that they can be mapped back to the AST. The changes described
by a rule must be the only changes to the PDG, otherwise meaning is not preserved.
Similarly, any newly defined edge label (variable) is assumed to be unique, and so cannot
conflict with any existing label, although the extension rule (Section 4.3.6) defines more
general constraints for picking the name for a variable. More generally, the application of
the subgraph substitutions must not violate the semantic contour rules. Finally, unless
otherwise noted, the substitutions work in both directions; the equations describe the

precise relationships.

4.3.1 Transitivity

A variable s that is assigned the value of another variable, r, has the same value, and
hence the same meaning as r. More formally, if there is a flow dependence e = F'D(u, z)
and eg; = FD(z,v;), where z is an identity vertex (i.e., an assignment), then there is
an indirect flow dependence from u to the v; for which the value of the flow is not
changed through z. Thus if z is removed and its input flow is spliced to its output flows:
es; = I"D(u,v;), the meaning of the graph is unchanged. The deletion may likewise be

inverted, inserting = between w and the v;, via variable r.

Rule 1 (Transitivity) Given all walks ueg;v; for fized vertex u and variable s, identity
vertex © (with the same control dependence edge as u) may be inserted between them for

all or one of the v; or more precisely:
Ueg; V] = UErTeg;V;

or for a v, in the v;:

!
UEg,Vy = UEg,TerVg, ﬁwesva

Note that these must be the only changes to the graph. The first case states the legal
substitution of a transitive variable before the existing variable, the other case, after. The

latter case is more complicated because a particular use of s is chosen for substitution
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(indicated by the subscript constant @), and the use cannot be using any other definitions
for the same input (any other edges €’s to v,). To see why this constraint is necessary,
which appears in the next two rules as well, consider applying var-to-expr on the initial
assignment in the program in Figure 4.5. This implies redirecting the constant 1 flow
to the two calls on £. However, the second call depends also on the assignment of x in
the conditional, which is not being changed, so inlining the 1 in the call to £ would not

preserve meaning .

x:=1

y = f(x)

if y < x then
x:=0

z = f(x)

Figure 4.5: Multiple definitions can prevent transformation

In the matrix-multiply example (See Chapter 2.6), the second case of transitivity
allows the constant ’matrix-multiply to be abstracted from function match-error
through the parameter header using expr-to-binding (See Figure 4.6). The inserted
assignment vertex in the PDG is implemented with parameter passing in the program

text.
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Figure 4.6: Transitivity justifies expr-to-binding

4.3.2 Indirection

Suppose a scalar is converted into some nested structure, such as an array or record
structure. What once was a direct reference to the variable now requires dereferencing
to store and retrieve values if meaning is to be preserved. This kind of change is captured

by the indirection rule.

Rule 2 (Indirection) Given all walks uv; for fixed u, insertion of vertex n, a nesting
operation, between u and v; (with the same control dependence as u) requires inserting

its inverses n;' between n and the v; (with the same control dependence as v;), or
1 !
Ues;v; = unes;n; v;, Awegv, for v, av;

This transformation allows changing the structure of variables (along with the way they
are accessed) to create new data types and abstractions. Figure 4.7 shows how the data
flow dependences are changed by 1istify in the example in Chapter 2.5. These changes

are justified by the indirection rule.

4.3.3 Distributivity

In the PDG, if vertices u and u’ are sequence-congruent, then any successor flow depen-

dence edge of u can be made a dependence out of u'.

Rule 3 (Distributivity) Given all data flow-dependence walks through verter u (zrues;v;),
vertex u', sequence-congruent to u, may assume the flow-dependence successor es of u

for any of the v;:
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picture-element

'square @ e object @

picture-element put

"square

Figure 4.7: The indirection rule is used in 1istify

Truesv = zpu'erv, w'Zu A Fwe' v

Multiple edges can be moved from u to u’ by applying the rule to other successors of
the eg;. The rule naturally extends to groups of vertices by applying the rule to the
z. The vertex-equality part of the rule can be derived constructively by copying «
and its incoming edges to create a trivially sequence-congruent u’. However, because
replicating a vertex is essentially multiple evaluation of the vertex, it may redefine the
output variable. This is why the rule changes the variable from s to r.

Figure 4.8 shows how applying var-to-expr to the second use of nr2 in the matrix
multiply example (See Chapter 2.6) changed the PDG, which is justified by the distribu-
tivity rule. In this case the call node is u, nr2 is s, the bottom assignment is », and len

is the newly introduced variable r to carry the moved dependence.

4.3.4 Control

As with communicating data through transitive assignments, control can be successively

propagated across control edges if the sense of the condition is not changed. Informally,
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matrix-rows matrix-rows
m?2 nr2 O - m2 nr2

Y

>call U > > call @ >
nr2 = matrix-rows
{D— el —

Figure 4.8: The distributivity rule is used in var-to-expr

if vertex x and predicate vertex p; are control flow successors of predicate vertex pg, x

can be made a control successor of py if:

1. z is duplicated and put under the opposite control successor edge, or

2. all of z’s flow successors are already under the control of the same conditional

sucCcessor.

The second case asserts that if = is not executed, it will not be missed. This holds for
loops, too, but only if there will be no definitions in the loop killing z’s definition or the
definitions that itself z uses. Trivially, if = represents a constant, a control dependence
is not necessary to regulate its execution since it can neither crash the program nor
change the state. However, unlike the other rules, not all cases of this rule are invertible,
since loosening a control-dependence on z may allow it to be executed when its value is
undefined. The constraints are stated precisely in the rules below.

When interpreting the walks in the rules, recall that control and data flow-dependences
are being interleaved, and that the data flow successors u; of a vertex z are not necessarily

under the same control dependence as z, unless explicitly stated.

Rule 4.1 (Control Distributivity) Given data flow-dependence walk zu; and if ver-
tex p1, both successors to pg, © can be made a control successor of p1 by the following

relation:
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po{p1, zu;} = popi{€truer s, P1€fa|se9€/Uz’}7 2’ data congruent to z

This transformation is basically an algebraic distributivity law for control. It is also the
control analogy to the distributivity rule, but since the control paths are exclusive, all
the edges must be copied for x' and there is no need to change the labels on the edges

between z'u;. The figure below shows the effect of applying this rule to a PDG.

Rule 4.2 (Asymmetric Control Distributivity) Given data flow-dependence walk
zu; and if vertex py, both with control predecessor pg, * can be made a control successor

of p1 by the following relation:
po{z,pretu; = popiiex,e}u;

This allows “distributing” a vertex into just one arm of a conditional in the case that all
those dependent on it are in that arm of the conditional. Note that this can inadvertently
improve the non-termination properties of the program (a change in WSD that reduces
the set of inputs that will cause the program to not terminate) by causing z not to be
evaluated in the case that py evaluates true and p; evaluates false. Since performing the
substitution right-to-left potentially has the opposite effect of increasing the chances of
non-termination, this substitution is defined only left to right.”

This rule may be similarly applied for p; that is the head of a loop (a while vertex),

with extra conditions to handle the possible effects on z by iterating the loop body:

Rule 4.3 (Recursive Asymmetric Control Distributivity) Given the data flow-
dependence walks xu; and while vertex py, both with control predecessor pg, © can be

made a control successor of p1 by the following relation:

pPo{zes, Pr*etrue fti = Popi*{€truees, etrue } Ui,

such that }.’f'we’Lc(pl):Sua V Zeap.sT V pripi*vesn.wart

"This rule can be generalized to allow right-to-left substitution when the operation in z can be
guaranteed to terminate, but this is not described easily with sequence-congruence.



79

The conditional clause assures that the repeated evaluations of z will not override other
variable definitions flowing to the w; in the loop, and that the data flow-dependence walks
to x are not changed. Specifically, edge elLC(pl):S denotes a loop-carried (LC) dependence
due to loop-head p; for variable s to any of the u;. z’s dependences would override such
an edge if z were moved under p;. Walk p1*p;*ve,p.0qr2 denotes an anti-dependence to
x caused by a variable definition anywhere within the loop. Such an anti-dependence
indicates that a (loop-carried) data flow-dependence would be introduced if z were moved

under pq.

) if 5 then
x =k + ] ¥<:<:k+j
if y < 5 then y =X+ 2
y i =x+2 else
else x:=k+]
y =X y =X

Figure 4.9: An example of the first case of the control rule
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4.3.5 Substitution

There are two rules for manipulating contours and constraining the contour manipu-
lations described by the previous rules. These follow directly from the definition of
contours and the requirement that all manipulations of vertices and contours be contour
consistent.

To change the name of a variable in a program requires changing the binding decla-
ration and all of the references to that binding, and then verifying that no name conflicts
have been introduced. In the PDG this requires changing the name of the references to
the variable defined by the contour (as implied by the binding declaration), and then

verifying that there are no inconsistent dependences.

Rule 5 (Substitution) Contour Cs can be renamed Cy if:

Vu,v € Cs, es=FD(u,v) = u,v€Cyr AN exr=FD(u,v)

In the transit example, this rule permitted renaming the variable miles-traveled as
miles-rolled. Figure 4.10 shows an example of the rule prohibiting a name change,
because the new, inner y contour defines y for only one of two vertices with a y edge

between them.

2 ( ) X 2 y
T, # [T, s
O—— O——O

Figure 4.10: Changing x to y is not meaning-preserving
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4.3.6 Extension

Adding a new contour Cx or changing the range of Cx does not affect the meaning of the
PDG if in the result there would be no edge entering or leaving Cx with label x. Assuring
this is slightly complicated by nested scoping rules, which requires manipulating the
contains relation rather than the defines relation. This means that an additional check

is required to assure that consistency is maintained.

Rule 6 (Extension) Contour Cx containing preexisting PDG vertices u preserves mean-
ing if, Vex such that Jv satisfying ex = FD(u,v)V FD(v,u), then ex is a contour

consistent dependence.

Contraction, the inverse of extension, is captured by the rule as well. Also note that
this handles moving a vertex in and out of a contour, since these are just extension and
contraction operations. In the transit example, the extension rule permitted importing
total-miles into the transit module. Figure 4.11 is an example that requires extension
to add the contour for len, which is needed for the substitution rule when applying
expr-to-var to the second use of nr2.® The extension rule holds here because the new
contour defines len for the two vertices connected by an edge labeled len, and does not

block the incoming edges labeled m2 and matrix-rows.

4.4 Defining a Meaning-Preserving Transformation

Now that a set of meaning-preserving substitution rules for the PDG are defined, it is
possible to describe how these are applied in defining a program transformation that
preserves meaning. This transformation relationship between a program and its PDG is
defined using a commutative diagram to relate manipulations on the graph to manipu-

lations on the program.

8expr-to-var at first appears to require the transitivity rule when looking at the change to the

program. But the graph shows that it is only necessary to add a label to the unlabeled edge.
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nr2
| ] matrix-rows
— matrix-rows m2 @ nr2 @ >
mQ\Vﬁgm nr2 -

len

matrix-rows
m?2 len

nr2

ofof

©

Figure 4.11: Extension is used to add the contour for len

Given program P and PDG G such that m(P) = G, then transformation ép: P — P’
preserves the meaning of P if 6g : G — G’ is a composition of meaning-preserving

substitution rules such that m(P') = G':

P m G
op bg
Y m Y
P e

Figure 4.12: The commutative diagram for program and PDG transformation

This relation is used to prove that a tool transformation (ép in the diagram) a priori
preserves meaning by showing that 6p = m~eégom, or, if we define m so that it operates
on functions as well as data, m(ép) = é¢g. This proof of correspondence is performed
manually, and currently informally, for designing tool transformations. By performing

this proof off-line, an expensive run-time proof that G’ is equivalent to (G is avoided.
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And once given dp, it is not necessary to apply m~! to reconstruct the program from

the PDG.

4.4.1 Globalization

To demonstrate the relationship m(ép) = dg requires an understanding of how a change
to the PDG maps to changes in its corresponding program. This knowledge is applied by
examining a program transformation procedure and mapping its change operation into
an equivalent set of substitutions in the PDG, thus showing the program transformation
preserves meaning. Since PDG substitutions are local, but program transformations are

global, this mapping is called globalization.

The commutative diagram is a guide to the mapping. Given the above transforma-
tion rules, and mappings m and m~!, it seems it that should be trivial to construct
a program transformation. However, the known algorithms for m and m~! are batch,
data-oriented algorithms. Although m might only need to be performed once if the
program is repeatedly recomstructed from the PDG, repeatedly performing m~! with
large programs cannot achieve good enough performance for interactive transformation.
Instead, it is desirable to lift m and m~! so that they operate on functions ¢ and ép
instead of the data passed to and from é¢g or 6p. The result would be a direct incremental

manipulation of the program, rather than batch reconstruction.

However, the formal basis for such a lift of program-PDG mappings is in its in-
fancy [Cartwright & Felleisen 89]. So rather than lifting m and m~! using a formal
basis, the technique is informally applied in the processing of implementing a transfor-
mation, based on the transformation builder’s knowledge of the programming language
and PDGs. The framework for deriving the correspondence 6g and ép is the globalization
equation, which helps to correctly define the complete meaning preserving transforma-
tion ép given the engineer’s change L to an expression e in P. The order of composition

of the changes is not important since each use is in a syntactically independent location:
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ip = ( [T¢u) )oL(e)
u;€m " Lofsom(e)

where fs is a function retrieving the flow-successors of a PDG vertex, and C is the
compensating operation applied to the u;, the uses of e. Note that the data-oriented m
and m~! functions are still present, but limited to retrieving program components based
on search in the PDG. This retrieval can be performed quickly without actual PDG or
program building operations (See Chapter 5.6). The L and C program transformations
are chosen by the transformation builder so that they map to the substitution rules (and
also that they make sense to the tool user). The result is that the core of the substitution
rules have been successfully mapped to the program, with the remaining accesses to the
PDG being efficiently supportable.

The operation m~ofsom(e) may be denoted as uses(e). As used in this context, the
uses are the program representation of the variable uses denoted in the def-use graph.

Now consider using the globalization equation to design a transformation. The com-
pensating transformation C' is known statically for a given L. For example, the engineer
swapping formal parameters directly implies swapping call arguments. But when the
transformation is applied, the actual calls to be updated are found by mapping e through
the PDG using m. These properties are reflected in the equation by the fact that C is
a constant to ép, but e is a parameter. Likewise, the semantic checks are mapped to
the PDG and their results converted back to program syntax form for failure reporting.
To construct a transformation requires, then, the program, P, with a mapping to G via
m, and a set of transformations ép defined by C and L. The arguments for C' and the
checks are computed using m and traversal in the PDG.

The program transformation is proven correct by showing that the C(u;) and L(e)
map to the PDG as a composition of the substitution rules, ég. When performing
this mapping the transformation builder must show that the rules are sufficient for
the program transformation to preserve meaning. This requires showing that (1) every

possible edge from the locally-changed object has been handled, (2) none of its input
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edges is affected, (3) that the compensations do not adversely affect any other incoming
edges in the compensated objects, (4) nor any of their output edges. No other edges
have to be checked because if the incoming and outgoing edges to the modified subgraph
are unchanged in meaning, then the rest of the PDG cannot have been affected.

This is what var-to-expr (when given a variable definition to inline) looks like

abstractly, where (v, e) is the expression that defines v:

op = H substitute. ) | oremove(y )
u€uses((V,e))

Of course it remains to be justified with substitution rules that this is meaning-preserving,
and the substitution rules imply checks that are lacking. The nature of these checks is

discussed next; then the justification follows.

4.4.2 Preconditions for Transformation

The substitution rules are conditional rules, constrained by the scope rules and other
conditions described in the rules themselves. A program transformation as defined by
the globalization equation preserves meaning only if those conditions implied by the
substitution rules are met. Therefore these checks must accompany the program trans-
formation to preserve meaning. Like the queries for the objects to be compensated,
checks are non-destructive, so they can be mapped inexpensively through m and m=1'.

These checks fall into the following categories.

Checks implied by the rules. For one, each rule depends on the dependence graph
having particular properties. The most prevalent property is that the distributivity rule,
the second case of the transitivity rule, and the indirection rule cannot be applied if
there are multiple definitions of the variable (i.e., multiple walks labeled by the variable)
reaching the vertices being modified.

Also, the application of a substitution rule must be consistent with the contour rules.

For instance, as shown in the example under the extension rule, the new contour intro-
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duced by the distributivity rule must not violate extension. In this sense distributivity
is not really a complete rule, nor is transitivity for the same reason.

Other implied checks are discussed below in the paragraph Move checks, below.

Checks because the general rule is not supported. Other preconditions are re-
quired because the transformation does not implement the most general compensation
implied by the substitution rules. The restricted application of the supporting rules
requires checking that the situation does not fall into the more general category. For
example, to inline expressions var-to-expr copies the defining expression to be inlined.
This copy-and-split paradigm is justified by the distributivity rule, which specifies that
a split edge must have its variable label changed. Thus when var-to-expr copies a
whole expression (rather than a single vertex), the rule should be applied for each vertex
in the expression, but it is not. The result is that if the expression has a side-effect
on a global variable, then evaluating both the original and the copy will not in general
preserve meaning. This is what must be checked.

There are two reasons why a wholesale copying can succeed at all. (1) The copied
expression passes values between expressions using nesting rather than a variable, so in
the PDG there is no label on the edge that is passing the value, obviating the label
change. (2) The variables used for passing values are declared locally to the expression,
so the variable is implicitly changed by the copy.

A more sophisticated version of the copy operation would allocate a new variable for
the side-effected store to make the split total. However, in some cases this is not practical
(or desirable) because the expression contains a call to a procedure that side-effects a
global variable. If this kind of split is desired, it must be done explicitly by the engineer,
rather than as a natural part of the var-to-expr transformation.

Another situation requiring a check is when not every type of dependence is com-
pensated. For most transformations, only one of data flow-dependences or control flow-
dependences are compensated. For example, var-to-expr only compensates across the

data flow-dependences generated by the variable uses of definition the expression being
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inlined. If there are other types of dependences that are affected, the transformation is
terminated. Def-order dependences are a prime example, as they link (some) multiple

definitions for a single use.?

Program syntax constraints. Many of the syntactic constraints are satisfied directly
by the PDG and the contour rules, as described in Section 4.2. The rest are simply not
implementable as program transformations. To use the example from Section 4.2, it is
not legal for a program expression to return values to two places, and this constraint
is implied by the fact that the parent of the expression gets the result. However, it
is also not possible to construct a program that has any other property. Thus this
kind of feasibility constraint is automatically satisfied during the lift to the program
transformation.

The remaining class of syntactic check just assures that the transformation actually
applies to the object. For example, var-to-expr only works when applied to a variable.
This is declared in the interface of the transformation procedure, which requires an AST
variable expression. Checking the syntactic legality of moving an expression is a slight
exception. Many constructs require that some expression be present in a location. For
example, the condition for an if-then cannot be omitted. Thus it is not syntactically
legal just to take the conditional expression of an if-then and put it somewhere else.
Only objects in sequence constructs such as scope declarations and scope bodies can
be moved. Although this could be checked by the syntactic interface of the move-expr

transformation, it is more easily checked dynamically.

Implied by the rules, part II: Move checks. As a special case of uncompensated
edges, anti-dependence and output dependence edges only make it easy to check if moving
code will add a new dependence. These edges are affected only by changes that reverse

the order of the evaluation of the expressions linked by the dependence. This is the

°They link only some because def-order dependences apply only when one definition can actually
overwrite the other, which means they cannot be in exclusive arms of a conditional [Horwitz et al. 88].
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converse of data flow-dependence, for which the dependence is removed when reversing

the order of evaluation of the linked vertices.

When a transformation moves an expression, it treats the violation of an anti- or out-
put dependence as a hard constraint and terminates, rather then trying to compensate.
Thus there is no substitution rule for a move—since it is not allowed to be a change to
the PDG—except the implicit rule that any change not covered by a substitution rule
cannot change the graph in any way. With the information provided with the failure
of a move check (a labeled dependence between two expressions), it is possible to apply
expr-to-var to the offending variable use (e.g, for an offending anti-dependence) to

store it in a temporary that can be moved over the offending definition.

Control dependence is another special case that also comes in to play when moving
an expression. A control dependence is sensitive to the syntactic extent of the controlling
expression, rather than to just evaluation order. That is, an expression can get moved
out of (or into) the arm of a conditional, changing the expression’s behavior. In this sense
control-dependences operate more like scope contours than flow-dependences. Another
special quality is that it is an incoming (rather than outgoing) dependence that must
be checked. (Note that although incoming flow-dependences can be broken by moving
an expression, anti-dependences eliminate the need to look back). Because of these two
qualities, control-dependences are checked like contours rather than dependence edges:
the transformation checks to see whether the destination of the move is in the same

control region as its source.

Another unique quality for checking a move is that all code that can be executed
within the moved expression must be examined for offending dependences. This is be-
cause the execution order of every instruction executed within the expression is being
changed. Thus, before performing a move check, the body of every function that can
be invoked in the procedure must be examined for variable references that are visible in
the scope of the context of the move. For example, when performing var-to-expr on

the second use of nr2 in the matrix-multiply example (See Chapter 2.6), the moved ex-
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pression (matrix-rows m2) transitively invokes expressions within matrix-rows, which
could affect the values within m2, since it is an array structure. The check reveals that
there are no side-effecting operations in matrix-rows, and ultimately the move check

succeeds.

4.4.3 Example: The Transformation for Inlining an Expression.

At the end of Section 4.4.1 the following manipulations for var-to-expr were proposed:

op = H substitute
u€uses((V,e))

e,u) oremove(me)

What justification can be provided that this preserves meaning? It is necessary to show
that the above changes, with the appropriate checks, map to the above substitution rules.
Using d, to denote the variable definition being removed, e the expression defining v,

and u,; for the uses of the definition, the substitution rules for ég are:

o Distributivity, to allow replicating e and moving the edges of the original to its
copies when there are multiple uses of d,,. This is a simple copy, so the check for e

being side-effect free applies here.

o Substitution, to allow removing the label on the dependence between the inlined
expression and its use. This is trivially applicable, since unlabeled edges are not

constrained by contours.
e (Control, to allow moving e to replace u,; that are in a conditional.

e Fxtension, to allow moving e into scopes where any u,; resides. All edges to and

from the moved vertices must be checked for consistency.

Given the above substitution rules, the required checks are (1) the move checks for
each inlining of the expression, including the extension check for scope dependence, (2)

as implied by the distributivity rule, verifying that the inlined expression is evaluated
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Figure 4.13: A flow diagram for the var-to-expr transformation

only once or that a simple copy produces an identical expression and (3) verifying that

there are no extra variable definitions reaching the removed variable uses:

/\ defs(u) = {v} | A (uses(v) ={u} V identity(e, copy(e))).

u€uses(v)

Note that when incorporating the move check that it is possible to use the proof for
move-expr as a lemma.

It remains to be shown that the above is sufficient to demonstrate that var-to-expr
preserves meaning. It is necessary to show that the four groups of edges discussed
above have been verified to be unaffected. (1) All data flow-dependence successors are
compensated, and all other types of edges are verified to be unaffected. (2) None of the
inputs to the inlined definition are changed, since only its final assignment is eliminated
and the move check shows that none of its inputs are affected. (3) The compensation
operations do not affect the output edges of the compensated objects. In particular,
only the method of input is changed: the values arriving and the operation performed
on them are unchanged. (4) Finally, it is verified that in the compensated object that
there is only one data flow-dependence for the particular variable use being modified, so

no input edges to compensated objects are affected.
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4.5 Updating the PDG

It is desirable to restructure programs interactively. However, computing a PDG from
program text requires polynomial time in the length of the program (See Chapter 5.6).
Fortunately, because the restructuring transformations are meaning-preserving, there
is an opportunity to develop efficient incremental PDG updates. In particular, the
substitution rules for deriving a transformation can be applied directly to the PDG
to track the transformation’s changes to the program. This is efficient because the
substitutions have a small impact on all dependences, meaning few updates are required
to preserve dependence—one of the two qualities required to preserve meaning (the other
being the preservation of the operations).

The rules describe the updates to data and control flow-dependences, but not anti-
dependences and def-order dependences, which are affected indirectly by the updates.
(The contour rules prohibit any change to the PDG, so they are not considered here.)
Because direct flow-dependences are unchanged for an unmodified vertex, it is only nec-
essary to consider the changes to anti-dependence and def-order dependence for vertices
directly modified by the rule. Furthermore, any newly introduced variable (denoted r in
the rules) cannot have an anti-dependence or def-order dependence associated with it,
because there is only one definition of the new variable. This is what the updates look

like:

Transitivity, case 1 (ues;v; = uerzes;v;).

o Anti-Dependence. egy, = FD(u,vt) in G is esp, = FD(z,v) in G'. This implies
AD(w,u)s, in G must be AD(w,z)s, in G’ since the definition (kill) of s has

moved to z.

o Def-Order Dependence. Since control and data flow-dependence are unchanged for
unmodified vertices, it is only necessary to consider vertices directly modified by
the rule. Edge esp = FD(u,v)in G is esp = F'D(z,v;) in G', and z has the same

control dependence as u, so DO(u,w)s in G implies DO(z,w)s in G'.
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o, e . I
Transitivity, case 2 (ueg v, = ueg,Terv,, Awegnv,).

e Anti-Dependence. Edge es, = FD(u,v,) in G is eg, = FD(u,z) in G'. Thus
AD(v,,w)s becomes AD(z,w)s. Since u has the same definition of s, it is not

affected for anti-dependence.

o Def-Order Dependence. By definition, for this case, there cannot be multiple defi-

nitions of s reaching v, in (G, hence there can be no def-order edge caused by v,’s

use of s.

- - - - o]
Distributivity (ziuesv = zpu'erv, WZy A Fwe'sv).

o Anti-Dependence. Edge ey between uv in G must be e, between u'v in G’ to avoid
multiple definitions of r, since u remains in G’. Thus, any AD(v,w), in G is gone
in G'. Since FD(u,v)s in G implies FD(u',v)s in G', any AD(w,u), in G must
be AD(w,u')s in G.

o Def-Order Dependence. As with the second case of the transitivity rule, there

can be no def-order edge to update because of the prohibition of multiple flow

dependences eg to v.

The edge updates for the indirection rule are analogous to applying both versions of

the transitivity rule. Reasoning about the updates for the control rule is more involved,

but the result is similar.

Control, case 1 (po{p1,2u;} = popi{etrue®ts, prefyse’ui}, ' data congruent to z).

Since z' is data congruent to z, it must have all the same incoming data flow-dependences.

It also gets copies of x’s output data flow-dependences.

o Anti-Dependence. The anti-dependences in and out of ' must be copied from z
with the data flow-dependences. Also, suppose that z (and hence z') uses and

defines a variable s. Then putting 2’ in G’ introduces anti-dependences between

for s.
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o Def-Order Dependence. As with anti-dependence, the existing def-order depen-
dences of z must be copied for z’. However, the definitions of the same variable in
z and 2’ are not def-order because (contrary to the definition of def-order) they are
executed mutually exclusively, so no edge has to be added. There is one additional
case. If there is an output dependence O D(w, z)s (abstractly, since they are not in
the implementation), it appears that moving z into the conditional will make it a
def-order dependence. However, because z’ is moved into the opposite arm of the
conditional, there can be no reaching definition of s by w. So by definition there

is no def-order dependence.

Control, case 2 (po{z,pie}u; = popi{ex,e}u;). In this case there is no replication

of z because all uses of its values are in the conditional.

o Anti-Dependence. Conditional execution has no impact on anti-dependence, be-
cause there need be just one execution path from use to definition for it to exist.

Thus anti-dependence is unaffected for this rule.

o Def-Order Dependence. Conditional execution does have an impact on def-order
dependence, but in fact there is no change for this rule. In fact, since no variable
definitions or uses are being modified and meaning is supposed to be preserved,
def-order dependences must not change [Horwitz et al. 88]. However, it is still
useful to show how def-order dependence and the rule interact. Suppose there
is DO(w,z)s in G that is missing in G’. The dependence implies by definition
that F'D(w,u,) and F'D(z,u,), and that one of these conditionally overwrites the
other. If the dependence is missing in G’, then either (1) one of the data flow-
dependences is gone, or (2) the control dependence on w or z has changed so that
neither overwrites the other, or (3) the dependence becomes DO(z, w)s. The first
case, the change to data flow-dependence, is not described by the rule, since only
one control dependence is modified. This contradicts the assumption that the rule

was applied to yield G'. The second case implies that the two definitions must



94

be in exclusive arms of a conditional in G’. Since this rule is moving z under pq,
this implies that w must be under the opposite arm of the same conditional p;.
However, this implies that w’s data flow-dependences cannot reach wu,, since it is,
by definition of the rule, under the other arm of the conditional. This contradicts
the existence the edge F'D(w,u,), so there could not have been such a def-order
dependence in G. The third case implies that the control dependences of both w
and = have been changed, so that the flow-dependences have survived in G’, as has
the conditional overwrite. However, this contradicts the assumption that the rule
was applied to yield G’, since w is not modified by the rule. The reasoning works

similarly for a def-order dependence in G’ that is not in G.

Control, case 3 (po{zes, p1*etrue Jui = pop1*{etrueTes, etrue } i, such that 7 'we’LC(pl):suaV
Tepp:sT V P1Ipi*vesp.wart). Like the case above, there is no replication of z, but z is
moved under a circular control dependence, meaning that expressions later in the loop
may affect x. Such effects are prohibited by the conditions in the rule. Thus it is neces-
sary to consider only the iterated evaluation of z. In particular, the iteration of z results

in multiple uses of its input flows, and multiple definitions of its output flows.

o Anti-Dependence. The case of x’s affect on itself is prohibited by the rule. Likewise
by anything else in the loop on z. However, now s can now be defined after the u;
as well as before. This means that for all data flow dependences zu;, there must

also be added wuiec(p,)ap:s®-

o Def-Order Dependence. As described for case 2 of the control rule, def-order de-
pendence must not be affected for a change. The reasoning is similar in this case,
so it is not repeated here. All those cases that could be affected by the addition of
looping are prohibited by the conditions, such as disallowing variable definitions of

s inside the loop.

This locality of updates puts an upper bound on the number of updates required for

applying a substitution rule, assuring efficient update of the PDG for any transformation
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in the tool. For example, in case 1 of the transitivity rule, the updates are counted as
follows: Create one new assignment vertex z, and one edge from w to z, a control
dependence edge for z, and |v;| low dependence successor edges from u are updated to
originate from x. Also, the anti-dependences of © must be moved to z, whose number is
bounded by the number of uses of s. The number of def-order dependences moved from
u to x is bounded roughly by the maximum static nesting depth of conditionals in the

program, times the branching breadth, times |v;|, the uses reached by u.

4.6 Summary

An abstraction for handling the flow-dependence and scoping of a program, derived from
a commutative diagram of the AST and PDG, has been defined. The abstraction has
made it possible to locally describe a class of structural changes to a PDG, and hence,
through the globalization equation, to its program. The changes are substitutions of
subgraphs based on the equivalence of vertices and the modification of the scope struc-
tures that delimit flows. The globalization equation helps relate transformations in the
program to substitutions in the PDG, avoiding program reconstitution by PDG unparse
techniques. This assures that an untransformed form in the original program remains
unchanged in appearance. Globalization also allows applying a program transformation
and its corresponding PDG transformation together, avoiding expensive batch recon-
struction of the PDG.

The focus of transformation on the AST (with the PDG used for reasoning) enables
preserving meaning by predictably modifying structure, rather than violating it. In
particular, the compensations are designed by the tool designer to be structurally and
syntactically coherent. For example, restructurings do not change scope structure or
variable names, unless they are explicitly designed to do so. Compensations are not
dynamically sought by the system in an attempt to preserve meaning. The static choice
of compensation transformations is not only efficient, but practical for good design of

restructuring transformations.



Chapter 5

Implementation

The model presented in the previous chapter is the roadmap for implementing the ab-
stractions of program representation, maintaining the relationships between them, and
supporting the obligations for reliable meaning-preserving transformations. In fact, the
implementation is a realization of the model’s commutative diagram for program and
PDG transformation. Also, the model’s globalization equation (Chapter 4.4.1) guides
lifting a PDG transformation dg to a program transformation ép, so that a transforma-
tion on program P is not reconstructed dynamically from PDG G via the m mappings.
However, searches are still performed via the AST-PDG mapping functions m and m=1'.
Thus the implementation must support representations for P and G, and for m and
m~! sufficient for doing search. These, respectively, will be an AST, PDG, and relations

implemented in a tabular form to connect their data elements.

The model used globalization for lifting a PDG transformation to the AST, giving
precise control over the effects of a PDG change on the program, and also making efficient
transformation possible. Lifting PDG queries to the AST in a similar fashion has the
advantage of allowing queries to be formulated on the rich mathematical basis of data
flow analysis and PDGs, while providing the familiar notation of program syntax. It
also frees the builder of a transformation from the details of how to perform mappings

and the mechanics of the underlying representations. Abstracting away from the PDG
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is implemented by building a query layer on top of P, G, m and m~!.

For the transformations themselves, applying the ép and ég functions in parallel on
P and G respectively, as suggested by the commutative diagram, is sufficient to avoid
the P-G mapping considerations, except that the representations of m and m~! must
be kept up-to-date. These parallel updates can efficiently implement transformations,
avoiding the batch reconstruction of the AST or PDG that is normally used to keep these
representations consistent [Horwitz et al. 89] [Larus 89]. Although incremental update
has been implemented for only two transformations, move-expr and rename-variable,
there is no inherent problem with applying the idea more broadly.

Auxiliary to the desire to ease implementing transformations and providing good
performance was the wish to design the tool’s components with enhanced functional
independence. This would permit rapid prototyping of research ideas and using an ex-
isting PDG implementation to avoid unnecessary coding. One prototyping experiment,
described in this chapter, was implementing incremental PDG update for the move-expr
transformation. This helped validate the claim that efficient incremental update is pos-
sible.

This chapter describes an implementation of the abstractions in the model that
meet the additional constraints of good performance and ease of change. The use of
var-to-expr as an example is continued here, showing how it is implemented. The
details of keeping the AST, the PDG, and the mappings between them consistent are
discussed at the end of the chapter. Before getting into these details, the implementation

platform and the system’s overall structure are discussed.

5.1 System Minutiae

The prototype tool supports the restructuring of Revision 3 Scheme programs. It is
implemented in Common Lisp (CL) and the Common Lisp Object System (CLOS). The
PDG implementation is a subsystem of Curare [Larus 89]. It supports interprocedural

analysis, including the aliasing properties of list structure references[Larus & Hilfinger
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88]. The PDG supports all features of Scheme except eval, first-class functions, con-
tinuations, and dynamic scoping. With a more complete PDG implementation the tool
could support these features (see Chapter 7.4). The tool also does not support macros
and minor syntactic variants. The PDG module accounts for about 17,000 lines of the
system, and the total system amounts to about 31,000 lines.

In the following, the terminology of CI. and CLOS is used extensively. The tool’s
hierarchical type and implementation structure is described by a set of CLOS classes,
and methods implement units of function. Roughly, a CLOS function-call dynamically
selects a method to invoke by choosing the one whose formals best match the types of
the actuals supplied. Also, a single call may invoke several methods (in some linearized
order), one of which is a primary method, and the rest auxiliary methods. This allows
modifying the function of a tool by writing an auxiliary method rather than modifying
existing methods.

For example, consider the following two method definitions of myadd with parameters
x and y, one that takes two integers and one that takes two reals:

(defmethod myadd ((x integer) (y integer))
(float (+ x y)))

(defmethod myadd ((x float) (y float))
(+ x y))

(myadd 1 2)

(myadd 1.0 2.0)
Which is selected depends upon the types of the values supplied. The first call of myadd
invokes the first method; the second call invokes the second method. An auxiliary
:around method can be added to these with this definition:

(defmethod myadd :around ((x integer) (y real))
(call-next-method (float x) y))

(myadd 1 2.0)

With this added declaration, the call following it will go to the around method before

invoking any other myadd method (the ones above would not match, anyway). The
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call-next-method then calls the method matching the types of the parameters, which
now would be the version taking two floats.

In the context of the prototype implementation, a module is a logical grouping of
classes and methods, typically stored in files separate from the code of other modules.
Except for the PDG implementation, which is actually implemented as an independent

CL package, no explicit import-export structure is used to gain access to interfaces.

5.2 System Overview

To put the following sections in context, consider Figure 5.1, a picture of the intermodule
dataflow structure of the prototype, with annotations (in italics) relating the modules
back to the model.

The low levels of the system represent the fundamental model abstractions. The
AST module is the P, the PDG is G, and the AST-PDG mapping and consistency

modules are, basically, the m and m™!.

There are two parts to the m function, the
constructive component, which parses AST forms into PDG representation, and the
data maps from existing AST nodes into PDG vertices. The data maps are constructed
by the parser. The AST-PDG consistency module is more of an implementation detail,
being responsible for keeping the AST and PDG consistent when the AST is changed
by a transformation. Consistency is implemented with an event-mediator integration
mechanism [Sullivan & Notkin 90] that allowed decoupling the implementations of the
AST and PDG, but supports powerful integration of their respective functions. Currently
consistency is reestablished by reconstructing most of the PDG from scratch, although
the mechanism has allowed migrating to incremental updates in two cases.

The Flow query and Scope contour modules, combined with the AST, form the pro-
gram representation layer. PDG operations are available through a syntactic interface,
simplifying access to semantic information. This layer supports the Restructure mod-

ule, which consists of layers of syntactic transformations, syntactic and semantic checks,

composed using globalization to create meaning-preserving transformations.
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Figure 5.1: The prototype’s inter-module dataflow diagram

A meaning-preserving transformation has the general structure of (1) check to see if
transformation can succeed, (2) transform if legal, (3) report failure if not. The check is
a set of primarily semantic queries accessing Scope contour and Flow query that assures
that the transformations on the objects will be sufficient to preserve meaning. The

transformation is typically a sequence of local changes to the AST, although it often
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contains queries to Flow query to obtain the objects that must be updated to preserve
meaning. Also, each top-level transformation must assure that the AST and PDG are
up-to-date. A transformation handles this by warning AST-PDG consistency before
transformation that they must be consistent, and then after transformation telling AST-

PDG consistency what changes it has made and that it is done transforming.

5.3 The Model Abstractions

P: The AST. The core data structure of the prototype is the abstract syntax tree
(AST) module (See Figure 5.1). Its design is similar to the one described in Chapter 4.2.
The AST is a widely used program representation in programming environments. It
closely matches a program’s textual representation, providing a convenient representation
for managing syntactic relationships and the semantics of scoping [Aho et al. 86], as well
as modifying the source of the program. It is created from a simple top-down parse of
the Scheme program’s s-expressions. Fach node in the AST is a program object, such
as a variable, function definition, or expression. A node has children if it is a composite
object. For example, a function call’s children are the function to be called and the

expressions that make up the arguments.

G: The PDG. The data of the PDG module is derived from the AST. The PDG, as
described in Chapter 4.1, is used to reason about data and control flow, and is derived
from low-level data-flow and control-flow analysis. The first step in constructing the PDG
is to translate the AST with a parser into sequences of statements that are essentially
compiler triples [Aho et al. 86]: (operation,result,arguments), where operation is
either operator call, function call, a jump or a jump label, result is a variable to hold
the result, and arguments are the variables that contain the inputs to the operation.
From this is computed a graph of the program’s control flow, called the Control Flow
Graph (CFG) [Aho et al. 86][Ferrante et al. 87][Larus 89]. Abstractly, computing the

CFG removes all the jumps and labels and replaces them with explicit edges linking
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basic-blocks of these triples. Finally, building the PDG involves computing all the data
relationships and necessary control relationships for each triple, and then storing these

relationships in a PDG node along with the triple.

Mappings m and m~!.

These two mappings between the AST and PDG enable
searches for AST objects using the PDG, as needed in the globalization equation. To
support these, the AST-PDG mapping module contains two invertible relations between
AST objects and PDG objects. The primary one is a mapping between AST variable
and literal references and CIF'G variable and literal references in a triple (See Figure 5.2).
A variable reference is either the definition or use of a variable in a triple underlying a
PDG node (including the variables representing operations), and so is a natural object

to map. This is a binary relation (ast-object, pdg-object) such that given an ast-object,

the pdg-object is retrieved, and vice versa.

tl:=2*y t2 := x + t1

Figure 5.2: Part of variable relation between the AST (left) and PDG forx + 2 * y

Because some AST forms are normalized during translation to the PDG, a single AST
variable reference can denote two or more PDG variable references. For this reason,
actually a [list of PDG variables is associated with an AST variable.

One change was required to the PDG implementation to resolve the dichotomy be-
tween mapping variables and searching based on PDG nodes. When searching the PDG
based on some AST expression, it must be mapped to a PDG node (or set of PDG nodes)

for the search. But in some cases, once an expression is mapped to a PDG node, it can
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be difficult to separate search initiated from a node’s operation or its arguments. The
standard problem is mapping from a simple use of a variable in the AST. This is not
represented as an operation in a CFG triple; it is folded into a triple including variable
references (uses) to be used arguments to an operation, a program operation such as +,
and a store of the result into a variable. To separate the search based on a variable use
in the AST, each actual program variable (and literal) must be assigned to a temporary
before being used in an operation, thus giving each AST expression its own triple. Like-
wise for assigning the result—an operation always assigns to a temporary first, and then
to the real program result variable. This results in each AST expression, even a variable
use, being mapped to its own PDG node. Literals and operation result variables were
already handled in this way in the original implementation of the PDG, but variables
were not assigned to temporaries. The change was simple, and basically involved not
treating literals and variables differently during parsing.!

This problem is exhibited in Figure 5.2, which does not use temporaries variables be-
tween nodes to decouple expression mappings. If a search were initiated on the reference
to y, it would be mapped to the * operation. A search would confuse the call of * and
the reference to y. The PDG in Figure 5.3 corrects this mismapping by giving y its own
PDG node.

The second relation is between AST expressions and PDG (temporary) variable ref-
erences. This relation is used to find the flows due to the value returned by an expression,
which are represented in the PDG by temporary variables (abstractly these represent
unlabeled flows). Also, if a search in the PDG yields a temporary, this relation maps it
back to an AST expression. The reason that the two relations cannot be put into a single
relation is that treating an AST variable like an expression could yield a PDG temporary
it was assigned to, when in fact the actual PDG reference of the AST variable is desired.
The relations are packaged as three functions: find-pdg-vars, which maps to the PDG

variable references associated with an AST variable reference; find-pdg-expr-vars,

'If the tool were reimplemented from scratch, this might not be the design choice made; the mappings
could be reimplemented to map to edges as well as operations.
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Figure 5.3: Part of variable relation between the AST and factored PDG forx + 2 * y

which maps to the PDG temporary variables for storing the result of the corresponding
AST expression; and find-ast-expr, which maps from a PDG variable reference to
either (1) an AST expression, if the PDG variable is a temporary variable denoting the
value of the AST expression, or (2) an AST variable, if the PDG variable denotes an
actual program variable.

Of course, variables are not the only objects in the PDG that need to be accessed.
Abstractly, m should be able to map any AST object to any PDG object. Based on
the context of the operation that needs the mapped data, the mapped variable can be
translated into the object actually needed. For example, to access the outward graph
edges due to a variable definition, parent pointers are followed from the PDG variable
up to the PDG node representing the operation causing the definition. Then the labels
of the successor edges can be matched against the variable to select the appropriate
edges. For example, consider finding the PDG definition of a function based on its
lambda definition. Mapping the AST lambda expression to the PDG will yield a variable
definition, perhaps a temporary. By calling contained-in the enclosing triple can be
reached, which contains the PDG lambda definition in the argument position.

The change to the PDG was eased by the fact that relations are represented indepen-
dently of the AST and PDG. It has also allowed changing and adding relations without

modifying the existing modules. Originally just the variable relation was implemented.
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Later the expression relation was added, and soon after it was changed from a 1-1 relation
to a 1-many relation.

One potential disadvantage of external relations like these is that when an AST object
is removed from the AST, its entries must be removed from the relations to avoid garbage
accumulation.? In this instance it is not serious, since it is easy to visit all variables in
the AST or PDG to determine what is no longer reachable.

The relations can be implemented easily (and efficiently), by a pair of hash tables,
one keyed on ast-object, the other on pdg-variable. The cost in space and time for
hashing structures is minimal, although it is dependent on the exact implementation of
the tables. Self-organizing hash tables [Larson 88], for example, have amortized cost of
space linear in the number of elements, and constant time for lookups, insertions and
deletions.

The relations are constructed by the AST-CFG parser (shown in the diagram as part
of AST-PDG consistency). This parser updates the control flow graph (CFG), the base
data structure of the PDG, and so it is the one module that knows how to build (and
thus map) between AST and PDG objects. The details of building this mapping and

keeping it consistent is described below in Section 5.6.

5.4 Mapping Operations on G to P

Because the AST is the central representation upon which contours, the PDG, and
program transformation depend, but semantic information is central to restructuring, it
is desirable to have a complete, AST-oriented interface for performing all queries and
transformations. This, in essence, combines the best of the two sides of the commutative
diagram, representing them through a single interface by completing the lift of G’s
operations to P. The mappings between the AST and PDG, make this possible. In

particular, an implementation of a semantic operation on syntactic data only needs to

2The prototype’s implementation of relations uses CLOS’s features to dynamically add slots to the
AST and PDG node types. This maintains separation without requiring a free-standing relation.
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map the syntactic form into its semantic counterpart, perform the query, and then map
back. This is easier than lifting transformations because the maps already exist as
concrete element-wise relations.

The translation of semantic queries is the primary purpose of the Flow query module,
but a secondary role is allowing queries of the form “What if...?” This is not simple
because the query almost necessarily asks questions about the effects of introducing a
construct that does not yet exist. The solution is to generalize the program representation
interface by not requiring the existence of the AST form being queried about, but only
its parts.

Several of these unified, generalized functions that comprise the unified program
representation interface are listed below in Table 5.1. A handful of these are described
and used throughout the chapter, giving a sense of the uniformity of the interface across
syntactic and semantic queries. The right-hand column in the table says whether the
query actually accesses the PDG. The query crash-free?, for example, does not. This
query is useful if moving an expression will cause its control dependence to be loosened—
it will be executed more often. If the expression cannot crash the program, then the move
preserves meaning. Otherwise, loosening the control dependence risks causing an error
that would not have occurred in the original version, because the expression now executes
possibly more frequently, and may crash in one of these newly added executions. The
reason that this query does not access the PDG, however, is only because it is very
conservative: it checks that the expression is a constant, which is a syntactic property.
A more ambitious check might actually check if the operations involved have crash-free
properties, requiring an access to the PDG. With the interface as it is defined, this
change in implementation would be transparent to the higher layers, making the change

easier.

Translating queries on (G to be on P. According to the model translating a semantic
(PDG) query @ to a syntactic form should look like m~1oQom. Because of the mapping

relations, this is essentially the structure of unified queries that access PDG information.
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The only catch, as mentioned in the previous section, is that the maps are formulated on
variables, so other objects have to be retrieved with some additional work. Fortunately,
mapping these operations to the AST also hides this wart. The advantage to structuring
queries this way is that ¢ can be formulated on the rich mathematical basis of data flow
analysis and PDGs, but it can be accessed in the familiar notation of program syntax.

To give a sense of how the mapping works for a query, consider get-uses, the syn-
tactic translation of the uses query, first considered in Chapter 4.4.1. As defined there
it was described as the data-flow successors to a PDG vertex due to a particular variable
use. Its translated version in the model is m~'oflow-successorsom, and it was used
to globalize var-to-expr by finding the syntactic uses that depend upon the variable
definition being removed. To implement this in the prototype, get-uses actually uses
the def-use annotations derived from the CFG. The dependence edges of the PDG could
be used here, but that would be unnecessarily complicated, given the presence of the
def-use graph. get-uses retrieves the PDG variable definitions representing the AST
variable, reads the uses attribute of the definitions, and then maps the uses back to the
AST. This is shown in a simplified form in the following definition:
;;; Syntactic translation of the USES query.
&é;fmethod get-uses ((ast-var s-variable))

(let* ((pdg-defs (find-pdg-vars ast-var))
(pdg-uses (mapcan #’uses pdg-defs)) ; short, don’t go to PDG

(ast-uses (mapcar #’find-ast-expr pdg-uses)))
ast-uses))

This is straightforward because the mapping and query are appropriately decomposed:
the query is made on the representation best suited for it, and the data is formulated
and delivered in terms of program syntax, which is familiar to the programmer. After
performing this mapping var-to-expr only needs to apply the basic transformation on
the definition, and the compensating transformations to the uses. This is shown in the

next section.



108

Now consider the semantic query strong-syntactic-dependences(expril,expr2),
which searches for a walk of data flow and control flow dependences that might link the
two expressions semantically (See Chapter 4.1.2). It is one of several checks required
before moving any expression, since a semantic link in the two expressions implies their
evaluations cannot be reversed. Again, the PDG is the best representation for performing
the search, since it explicitly contains the dependences, but the AST is the representation
being manipulated. First, all the AST variable references in expril are retrieved, and
these are mapped to the PDG by the Flow query module using find-pdg-vars. This
must include externally visible variable references from the body of any function called.
Then parent pointers are followed from these variables using function contained-in,
eventually reaching their containing PDG nodes. The nodes in expr2 are gathered in a
similar fashion. To walk from expr1 to expr2, a transitive closure of data and control flow
dependences, accessed by successors, is followed. If expr2 is reached, then potentially
there is a semantic dependence. In this case the walk of PDG nodes is converted back
to its syntactic form: underlying-object is called to retrieve the triple, whose var slot

is converted back to an AST expression or variable with find-ast-expr.

Generalizing the syntactic interface. By translating every semantic query like
those above into its translated form, knowledge of the PDG’s conventions are abstracted
away, leaving a single, syntactically-oriented interface for queries. But now consider
the second role of the Flow query module, allowing queries about program components
that do not yet exist. This requires minimizing the dependence of a query’s interface
on the AST representation of the object being discussed. For instance, an argument
to strong-syntactic-dependences can be merely an ordered list of expressions, but
might become the body of a function, should the dependence check succeed. In the case
where a structure is going to have a sub-object removed from it, the result of a query on
the structure might require the impact of the sub-object removed using a set-differencing
operation, or fashioning an alternative formulation of the query that bypasses the object.

For other checks the easiest implementation temporarily transforms the AST, per-
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forms the query, and then transforms back. An example is the binding-dependences
check, which determines if moving an expression will change any of the bindings refer-
enced in the expression. In the special case that a binding itself is being moved, it is also
necessary to check that no other expressions are affected. The easiest way to check this
is to capture all references to the binding in the old location, move the binding, then
capture again all references to the binding, and move the binding back. If the difference
of these two sets is non-null, the binding cannot be moved. If all the checks succeed,
then the normal move-expr is called.

In Chapter 4.2, contours were introduced as an extension of PDGs to allow reasoning
about scope structure when transforming the PDG. Since queries are initiated on AST
objects, and the results reported via AST objects, many contour operations actually
do not need to access the PDG. However, since queries are initiated from AST objects,
this fact is transparent. One exception is the query flows-out-of-scope. This method
takes a variable instance named v in the AST and a scope s, and the method determines
if there is a definition of » in s that is used outside s. By mapping s into the PDG and
traversing the flow dependences with labels v originating in s, and then converting back
to the AST, it is then possible to see if the resulting AST nodes are in a scope other
than s. In fact, the containment check could be performed in either the AST or PDG
(by using the maps). The crucial point is that the scope structure is present only in the
AST, and so the set of PDG nodes that is contained within s’s contour is determined by
the AST’s scope structure. With the AST-PDG mapping this imposition of structure is

trivial.

5.5 The Restructuring Layer: Realizing 6p

The lowest levels of the system provide ways of relating the AST and the PDG and
keeping them consistent, and the layers above use these to build a flexible syntactic inter-
face for accessing all information. The remaining layer implements meaning-preserving

transformations. The globalization equation of Chapter 4.4.1 prescribes that the pro-
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Unified Syntactic Interface

Access PDG?

(built-in-fnct? ast-var)

(user-fnct? ast-var)

(var-use? ast-var)

(var-def? ast-var)

(get-definitions ast-var)

(get-uses ast-expr)

(get-values ast-var)
(single-element-aggregate? ast-expr)
(makes-list? ast-expr)

(makes-vector? ast-expr)

(crash-free? ast-expr)

(side-effects? ast-expr)

(io-effect? ast-expr)
(syntactically-movable? ast-expr)
(result-used? ast-expr)

(control-parent ast-expr)

(dominate? ast-expr ast-expr)
(strong-syntactic-dependences ast-exprs ast-exprs)
(in-scope? symbol ast-exprs)
(within-scope? symbol ast-exprs)
(get-binding symbol ast-exprs)
(defining-scope symbol symbol-location)
(defining-binding symbol symbol-location)
(all-flows-out-of-scope ast-exprs)
(binding-dependences ast-expr new-location)

Z 22222 A< K2 <2<

Table 5.1: Semantic functions with syntactic interfaces
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gram transformations are derived by hand to be applied directly to P, and queries for
finding elements to compensate is mapped through the m functions. The latter has
already been abstracted away in the program representation layer. The globalization
equation requires that the program transformation be justified by the substitution rules
that parallel it in G and be accompanied by the checks implied by the equation and the
substitution rules. This was discussed in Chapter 4.4.3, and the example below deriving

var-to-expr is driven largely by these requirements.

A meaning-preserving transformation’s top-level function is (1) check to see if can
transform, (2) transform if yes, (3) report failure if not. Because consistency and trans-
lation are managed by the lower layers, a transformation’s implementation typically
adheres to this structure, and the restructuring layers (See Figures 5.4 and 5.6) have an
analogous structure to this composition of operations. The structure of lower levels of

function, such as globalization, was first discussed in Chapter 4.4.1.

The only deviation from this high-level view is the obligation to manage the prop-
agation of changes from the AST to the PDG. Briefly (See Section 5.6 for details), a
meaning-preserving transformation sends events at the beginning and end of a trans-
formation to let the underlying AST and PDG know that they are about to accessed
and should be consistent with each other. This allows rebuilding the PDG lazily. The
events are sent automatically by a CL. macro that wraps each transformation definition.
Within the transformation is a method that performs the actual change to the AST. An
auxiliary method is attached to this method that tells the consistency agent what has

happened to the AST so that the PDG can be brought up-to-date.

High-level transactions and update signalling used with the program representation layer

simplify globalizing transformations by keeping the details as far away as possible.

However, since a meaning-preserving transformation is the composition of a number
of smaller transformations, it is possible that queries and transformations might be in-
terleaved. Interleaved queries could access inconsistent PDG data, because logically the

whole meaning-preserving transformation happens at once, with no intermediate state.
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Figure 5.4: The layers within the Restructure module (Arrows represent dataflow)

There are two techniques that a programmer uses to build a transformation so that it
does not access semantic information out of phase. By convention a transformation as-
sures this within itself by retrieving all the globally related elements before performing
any changes to the AST. But a compensating transformation called by it may try to
access the PDG. However, it is possible to move the checks of the compensating trans-
formations before any transformation begins. To allow this checks and transformations
are implemented in separate methods. It is safe to have these checks up front because
the main transformation and its compensations are logically done in parallel anyway,

and hence the checks should really occur before either the AST or PDG have changed.

Because a transformation’s check and the report of failure are separated (the check
records the failure, but leaves other methods to give it to the user), it is possible for a
top-level transformation to use the failure to guide alternative attempts to achieve the
structure that the user desires. This is not exploited in the current prototype, primarily
because failure-driven transformations have proven difficult to implement satisfactorily.

For example, for extract-function to avoid failure, it might compute what variables
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will be out-of-scope when the function is moved to its new location, and force these to be
parameters of the new function. However, this can yield a function whose interface is not
the one desired by the engineer; the extra parameter might be for caching a temporary
result (computed outside the extracted function) or for an embedded computation not
part of the function the engineer intends to abstract.

This final caveat aside, implementing a transformation closely follows the construc-
tion introduced in Chapter 4.4.1, with additions for consistency of the AST and PDG
data, most of which is automatic. Listed below are the tasks the transformation builder
carries out, with comments about what was done to implement var-to-expr. The dis-
cussion has been simplified by assuming that the selected expression is a simple variable
definition (not a variable use or a binding declaration) and eliminating some flexibility

options.

1. Implement the local transformation that the engineer logically applies. Logically,
the variable carrying the value of an expression is being deleted. Locally speaking

this is the low-level operation ast-remove!.

2. Implement the transformation that must compensate the local change. According to
the transitivity law, the compensation of deleting a variable definition is to insert
the defining expression in all the places where the variable definition is used. The

compensation is the low-level operation ast-subst!.

3. Formulate the queries that select the forms to be compensated. To retrieve the uses

of the variable being deleted, get-uses is called on it.

4. Write a transformation combining the local and compensating transformations.
This is the instantiated version of the globalization equation, called var-to-expr
in this case, which takes the selected expression, finds its uses through get-uses,
removes the expression with ast-remove!, and then does ast-subst! on the
uses with a copy of the expression that originally defined the variable. This is a

simplified version of the code:
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(def-transformation var-to-expr ((def s-variable))
(let* ((uses-of-def (get-uses def))
(def-par (contained-in def)) ; an s-setting
(def-expr (expr def-par)))

(ast-remove! def-par (forms (contained-in def-par))) ; local

;; compensating

(dolist (var uses-of-def)
(setq def-expr (copy-ast-node def-expr))
(ast-subst! var def-expr))))

5. Implement versions of this that signals modification events. This is a wrapper that
first stores away the scope expression that contains the definition of the variable to
be removed, calls var-to-expr, and then calls signal-dependents on the scope.
Below is the CLOS auxiliary method that transparently wraps the transformation.
(defmethod var-to-expr :around ((def s-variable))

(let ((scope (defining-scope def)))
(progi

(call-next-method) ; call to the transformation
(signal-dependents scope :CHANGE))))

6. Gather the checks for the top-level transformation. Basically, a check will examine
the successors of the changing object, removing those that are being compensated,
and those that are unaffected. If there is anything left, the transformation’s com-

pensations will not be sufficient to preserve meaning.

The checks for var-to-expr are several-fold. First, the expression to be inlined
must in fact be a variable definition, a set! for the simplified example. Sec-
ond, moving the expression must not change its meaning. This requires call-
ing move-expr-check-semantics on the defining expression with respect to each
value returned from get-uses. This is called in all transformations that move
code, saving considerable implementation effort for new transformations. Third,
multiple evaluations cannot have side-effects. Thus if the result from get-uses

has length greater than one, a false value is required from side-effects? on
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the expression. Last, none of the uses to be replaced can have two possible def-
initions (for example, one each in the arms of a conditional). This is checked
with no-multiple-defs-check, which calls get-definitions (the converse of
get-uses) on each variable use to make sure there is only one. The checks are put

into var-to-expr-check. Below is a simplified version of the semantic checks.

(defmethod var-to-expr-check-semantics ((def s-variable))
(let* ((uses-of-def (or uses (get-uses def)))
(def-par (contained-in def)) ; an s-setting
(def-expr (expr def-par))
(movable-p (every #’(lambda (u)
(move-expr-check-semantics def-expr u))
uses-of-def))

(copyable-p (or (not (side-effects? def-expr))

(<= (length uses-of-def) 1))))

;; Check to make sure that if it is a side-effecting expression that
;; there will only be one of them.
(when (not copyable-p)
(report "Cannot multiple-substitute side-effecting expression: ~a"
def-expr))

;; Return a value indicating whether all the subchecks succeeded.
(and (no-multiple-defs-check def uses-of-def) movable-p copyable-p)))

7. Combine the top-level check and the transformation into a meaning-preserving
transformation, using a macro that defines top-level functions with transactions.

This is the most simple step, and the code looks something like this:

(def-global-transform checking-var-to-expr ((var s-variable))
(if (var-to-expr-check var)
(var-to-expr var)
(print-failures)))

The def-global-transformform puts a (signal-sources) call at the beginning
that makes sure that the transactions are in phase and the PDG is ready to be ac-
cessed. At the end is inserted (signal-restructure-complete) to mark the end
of the transaction. Note also that the check is separated from the report of failure,

so that corrective measures can be taken in more sophisticated transformations.
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As suggested by the implementation of var-to-expr, the lower level tasks often do
not require implementing new operations, since they already exist. This is especially
true for the syntactic transformations, and the basic semantic queries and checks. Also,
since the basic mechanisms of consistency are in place, the declarations of AST changes
and Restructure’s order of access of the AST and PDG are usually simple. The major
difficulties are in precisely stating checks, which requires knowledge of the semantics of
the language and the semantic relationship between the old and new structure.

The next section provides the low-level details of implementing consistency of the
low-level representations, which is followed by a brief overview of how all the system

components fit together.

5.6 Maintaining Consistency Between the AST and PDG

As the AST is changed by transformations the PDG and the maps between them must
stay consistent. Although incremental update of the PDG is possible, it has not been
implemented across the board, requiring batch reconstruction of the PDG in the general
case. This section describes the consistency mechanism and an experiment in imple-
menting incremental PDG updates.

There are several conflicting constraints that together imply that consistency should

not be embedded in any existing module:

e only the AST knows the effects of its operations on its own content,

e only Restructure knows when it needs semantic (PDG) versus syntactic (AST)

information,

e only AST-CFG parser knows how to translate AST changes into PDG changes,

and

e rebuilding the PDG is expensive, and so must be minimized.
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Thus the AST contributes change information, Restructure knows about the ordering of
AST and PDG access, the parser contributes knowledge about translating changes, and
the PDG knows how to rebuild the PDG from the base CFG structure. Observe the

intermodule dataflows in Figure 5.1 to visualize the interactions.

The consistency interactions are implemented in a special consistency module, AST-
PDG consistency, using a relation of top-level forms between the AST and PDG and
an early version of the event-mediator integration mechanism [Sullivan & Notkin 90].
Intuitively, an event is a signal from object a to object b that something has happened in
a that might be of interest to b. The content of the event—its name and any associated
data—provides the necessary information for b to act appropriately. By a sending an
event rather than directly making a call on b, @ does not require any prior knowledge of
b. This can be implemented by keeping a list objects (b) that are interested in receiving
another object’s events (a). Also, so that b and a can be independently developed and
used, a should not signal directly to b, but rather to a object that knows enough about

a and b to do the updates.

This is the mechanism used to relate the AST and the PDG. Abstractly, the AST
exports a number of events that it may signal, and describes the data that it will associate
with each event—a type signature. In this implementation the events are not explicitly
exported nor do they have an explicit signature. Acting as a mediator between the
AST and PDG, AST-PDG consistency receives these events with the data described in
the signature, and subsequently updates the PDG when semantic data is required by
Restructure. Using events to signal change allows adding or removing modules dependent
on the AST without modifying the AST. AST-PDG consistency becomes eligible to

receive events from the AST by calling a registration routine.

AST announces three events: Insert, Delete, and Change. Fach is associated with
a single argument, the object affected by the operation issuing the event. In this im-
plementation, the argument is always a Scheme top-level form. An insertion or deletion

of a sub-form is converted into a Change of its containing top-level form. Although a
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Delete followed by an Insert of a changed form are syntactically the same as Change,
they are not semantically identical. The intermediate state between the Delete and the
Insert might be inconsistent for a dependent tool. The event and registration structures
were incorporated into the AST by adding to its superclass hierarchy, although relations
could be used to associate registrants with AST objects. Signalling of events is handled
by CLOS auxiliary methods, which allowed adding function to AST calls without modi-
fying existing code. In a more traditional programming language it is necessary to have
the event signalled at the end of the code implementing the mutating operation. The
prototype attaches an auxiliary method to any method that mutates the AST, and the
auxiliary method sends an event appropriate to the kind of change.

The PDG does not need to announce any events because all changes to it come
through the event mechanism (See Figure 5.1). Since it does not announce events it was
not necessary to modify the PDG to integrate it with the AST. This was valuable since
the PDG was not implemented by the author.

To map an AST event to a PDG change, AST-PDG consistency maintains a relation
between the top-level forms in the AST and CFG (See Figure 5.5; numbers match text).
For a (1) Change event, it takes the AST data provided in the event, (2) maps it to
the corresponding CIF'G data, and (3) replaces it with a reparse of the AST data. After
such an update the PDG is no longer internally consistent. The Restructure module is
integrated with the AST-PDG consistency to control when the PDG is brought up-to-
date with the CFG (this relation is not shown in the system diagram). The following

describes how this is implemented.

Lazy consistency and transactions. First, to assure that no visible state of the
PDG is brought up-to-date with an AST in an intermediate state, AST changes are
not propagated to the PDG until a transformation is completed; a sequence of changes
by a method in the Restructure module is treated like a single transaction. Also, the
cost of maintaining the PDG with batch construction is perhaps O(|program|3); the

algorithmic complexity is not known, although it appears to be a function of the alias
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Figure 5.5: AST-PDG consistency translates AST events into actions on the PDG

data flow calculations.® Hence, the PDG should be updated only as needed and only
where it is actually changed. (See Chapters 4.5, 7.4 and below for ways this cost can be
reduced.)

Both concerns of consistency and performance require buffering the propagation of
changes from the AST to the PDG. For AST-PDG consistency to buffer events correctly,
it normally receives data from the AST, but does not do the update. When it receives
a Transaction Complete event from Restructure, it is allowed to take the buffered mes-
sages and reconstruct the PDG from them. However, it does not do the propagate until
it receives a Transaction Begin signal. This event means that the PDG is about to be
accessed and the AST is about to be changed. At this point any cached events are
propagated and the PDG is synchronized with the AST. If a Begin event is received
within another transaction, but there have been events signalled by the AST in this
outer transaction, this is an error, since presumably the AST is not in an internally con-

sistent state. If a nested transaction—due perhaps to the transformation calling another

3]. Larus, Personal Communication, 1990.
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transformation inside it—mneeds to be begun after some changes, and the tool builder
has determined that the AST will be internally consistent, then an intratransaction mes-
sage Synchronize can be signalled by the restructuring operation controlling the outer
transaction. By not rebuilding the PDG until a Begin message is received, operations
not involving transactions can take place without forcing a rebuild of the PDG. Also,
under an incremental consistency scheme (see Chapter 7.4), transformations involving
independent parts of the program need not force rebuilding unrelated parts of the PDG.
Currently this is just a function of whether the transformation accesses the PDG—some

local transformations and some transformations that focus on scopes do not.

This consistency mechanism lacks an undo facility to rollback the side-effects of an
aborted transaction. In practice, this has required any transformation that is the se-
quential composition of other meaning-preserving transformations to move all the checks
before any of the transformations. Moving the checks is potentially difficult because the
checks for a later transformation usually assume the existence of a structure that does
not yet exist. An advantage of implementing a composite transformation in this fashion

is that it is not always necessary to rebuild the PDG between transformations.

Because of these impediments composite transformations have been implemented
only when they have a sufficiently greater value as a composite transformation than as
separate units. The best example of a composite transformation is extract-function. It
is the sequence of operations group-into-lambda, which wraps an argumentless lambda
literal around the code to be extracted; abstract-bindings, which gives parameters
to the lambda and arguments to the call; and expr-to-binding, which moves out the
lambda and assigns it to a variable so that it can be reused. The composition is useful
because the sub-transformations are so frequently applied together that using it saves
the engineer from unnecessary interactions with the tool. Also, the PDG does not have

to be rebuilt between the subtransformations.

Although it is possible to move the checks forward for extract-function, it is

complicated by the fact that the check for abstract-bindings does not have a lambda
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expression to query. The solution, described in general in Section 5.4, was to design the
check so that it does not require a lambda expression, just a list of expressions that are
(to be) the body of the function—the lambda is implied and so need not exist.
Temporary change is another situation in which lazy consistency is useful. Sec-
tion 5.4 described the need to temporarily change the AST to simplify performing the
binding-dependences check, among others. For such a change modify events need not
be sent, which allows doing the temporary change at minimal execution cost. To sup-
port this requires that there be two layers of syntactic transformation—one that does
not signal changes, and a layer built on top that does. For example, moving the bind-
ing for binding-dependences is handled by syntactic-move-expr, which is just like
move-expr, but does not signal changes of the AST. This layering technique works be-
cause the move does not disturb the AST-PDG mappings and (due to single-threaded

execution) the temporary state is seen only by the check.

Incremental consistency. As described above, consistency is maintained by recon-
structing the PDG after changes to the AST that could affect the PDG’s structure. But
in Chapter 4.5 it was shown how the PDG can be kept consistent with the AST without
batch reconstruction. This has been implemented for the move-expr transformation, re-
vealing the process of making a transformation incremental and the problems involved.
It also demonstrated the benefits of the system structure in allowing this quick change,
which required an afternoon of work.

A move is syntactically simple in both the AST and PDG. To update the AST, all
that is needed is a call on ast-remove! followed by a call to ast-insert!. A meaning-
preserving move in the PDG should not change the PDG at all: no data flow or control
flow dependences should be changed. However, the underlying CFG is affected, and since
it is occasionally accessed on queries, it must be updated. The update requires finding
all the statements (triples) corresponding to the moved AST expression, and moving the
implied basic-blocks to new locations in the CFG. The complication is that some moving

statements may be in a basic block that has statements not being moved. Splitting the
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offending basic block into two pieces before movement solves the problem.

To add this code to the tool only required replacing the typical signal-dependents
call in the move-expr auxiliary wrapper method with calls to functions that perform
the splits and moves described above. The change was isolated from the transformation
and required no work-around of the consistency mechanism. No change was required to
any AST or PDG code. However, this experiment did reveal that although the update
is theoretically null, this particular implementation of the data flow information still
required changes. It is likely that incremental updates for other transformations will

have similar problems.

In fact, this PDG implementation is not designed for incremental update, and perhaps
anticipating this change might have made it easier. The original consistency mechanism
for the PDG is data-driven, but still batch oriented. The mechanism knows that when
a certain class of information is needed, such as alias information, exactly what data
flow analyses are required. It can then perform, for the whole program, just those anal-
yses that have not already been performed from a consistent layer below. Similarly for
recording changes, it was conceived that a transformation declare what representations
it has changed, which invalidates the higher layers of representation. For example, a
change to the CFG invalidates the def-use information and alias information, and above
that the PDG—almost everything. There is no notion of how a small change in the CFG

corresponds in the PDG.

Overall, the change was successful. Moves in the tool now require seconds, whereas
before they required minutes. Since this is one of the most common transformations,
it has improved performance overall. The experience with underlying representations
suggests that queries should be implemented so that they do not access information below
the PDG unnecessarily. Query get-uses, described in the next section, accesses the def-
use information in the CFG. Avoiding these accesses would allow directly updating the
PDG without concern for the CFG or other supporting information. This might require

augmenting the PDG information to make some queries easier.
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5.7 System Review

Now that the implementation and use of all levels of the system have been described in
some detail, it is possible to describe how the upper-level of the system interacts with
the lower levels. The modular structure of the system with dataflow arrows connecting
them appears in Figure 5.1. The modules at the bottom—AST, PDG, and AST-PDG
mapping—manage basic representation. The modules AST and Flow query define the
high-level composite representation layer. The top-most module, Restructure, manipu-
lates the program representation and controls consistency.

It is also instructive to see how the different layers and modules of the system are
accessed during the execution of a transformation. Again var-to-expr is used as the
example (See also Figure 5.6). (1) Transformation var-to-expr begins in Restructure
by initiating a transaction, forcing AST-PDG consistency to read all the events that it
has cached and translate them into updates of the PDG. (2) Then its check is invoked,
which makes calls into the query and check layers like strong-syntactic-dependences
described above and no-multiple-defs-check, the check required for many of the sub-
stitution rules (See Chapter 4.4.2). If the check succeeds, then the actual transformation
is called. (3) Before any change is made to the AST, the uses of the variable to be
replaced are retrieved by calling get-uses on the variable definition. Once these are
safely in hand, the individual transformations from the local-syntactic transformation
layer ast-remove! and ast-subst! can be executed. (4) At the completion of the
transformation, the auxiliary method sends a Change event on the scope containing the
binding of the manipulated variable. (5) When the top-level transformation completes,

the transaction is signalled as complete.

5.8 Summary

The commutative diagram of the model, in conjunction with the globalization equa-

tion and the substitution rules, provided significant guidance in the implementation of
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Figure 5.6: The layers and ordering within var-to-expr
(Arrows are function call; numbers match discussion)

the tool. The globalization equation suggests a straightforward approach to construct-
ing transformations—manually deriving the transformation mappings and dynamically
computing data mappings. The equation also explicitly obligates the transformation pro-
grammer to use the substitution rules to justify the correctness of the mapping between
AST and PDG transformations.

By separately implementing the abstractions of the model, a natural separation of

concerns was achieved in the implementation. In particular, separating many kinds of

information such as:

e AST and PDG data representation,

e AST and PDG data consistency,
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e the Flow query interface from AST and PDG representation,
e syntactic and semantic layers in the Restructuring module, and

e failure discovery and failure reporting,

made it possible to implement and modify each in isolation and to incorporate com-
plex function without affecting other components. In practice this has made adding
a new meaning-preserving transformation more straightforward than anticipated; most
can be built by combining existing syntactic transformations and semantic checks. Ex-
perimenting with consistency has been possible, too, allowing incremental updates for
transformations to be implemented one-by-one without requiring global change.
Likewise, enhancing the PDG to handle first-class functions, completing incremental
consistency, or adding failure-driven transformations will not be complicated by unnec-
essarily coupled components. This separation required building extra tools to achieve
the necessary integration of function. But they are small, and as the needs for integra-
tion have changed, the integrated tools have not had to change unless their function was
inadequate. Because of the exploratory nature of this research, this has turned out to
be a major benefit. In a non-exploratory setting this separation will still be valuable for
dynamically adding and removing tools such as editors and version control.
Interestingly, the desire to keep components functionally independent allowed imple-
menting rich component dependences. In particular, implementing component connec-
tions through relations and event-mediator integration has allowed developing and easily
modifying the functions for mapping between the AST and PDG. If the components had
been built together, the mappings might not have been as easy to implement. Specifi-
cally, independently implemented relations have allowed migrating from 1-1 to 1-many

relations as more properties of the AST and PDG relationship needed representation.



Chapter 6

Related Work

The influence of Hoare’s work [Hoare et al. 87] on the value of source-to-source trans-
formation was discussed in the introduction, as was the influence of Parnas’s work in
modularization [Parnas 72] and Belady and Lehman’s work on the impact of iterative
maintenance on overall system cost. Likewise in Chapter 4 the usefulness of PDGs and
their background has already been discussed. This chapter examines relationships to
other work not yet explored. In the remaining work these relationships fall into three
categories: shared goals, shared technique, and complementary goals. Few of the re-
search projects described below fall into just one of these categories. Comparison with
research that has similar goals will give a sense of the range of techniques that have been
applied to reducing maintenance costs, and which are most effective. Comparison with
research that shares technique will expose the general applicability of transformation to
solving software problems, and expose pitfalls that have been encountered previously
with this technique. Research with complementary goals addresses issues that can im-
prove the task of tool-aided restructuring. Examining this research gives a sense of where

restructuring fits in the maintenance process.

The basis for these comparisons are the essentials of the thesis research:

e reducing the cost of maintenance,
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e using transformation to restructure,

the need for human judgment in choosing a good restructuring,

the need to preserve meaning,

and the role of globalization in achieving that goal.

These are not examined item-by-item in each discussed work, but the appropriate points

are raised as necessary.

6.1 Imposing Block Structure

A program using gotos can be automatically transformed into a program using only the
structured flow graph operators sequence, branch, and loop [B6hm & Jacopini 66]. The
intent is to improve a program’s structure to lower the cost of maintenance, a shared
motivation with the research of this thesis.

Most of the solutions involve simulating gotos with structured operators. One pos-
sibility is to use a large case statement inside a loop [Williams & Ossher 77]. This is
done by putting each jump-free section of code in the original program into a case in
the case statement. The case label can be the constant whose name is the original goto
to that piece of code. Fall-through gotos are given an invented tag. Then at the end
of each case a flag is set to the label of the goto that would have been jumped to next
in the original program. When the top of the case is entered again on the next loop
iteration, it selects the case corresponding to that label (See Figure 6.1). This proves
unsatisfying when the gotos are tangled, as the result is not much prettier than the orig-
inal. Some approaches try to preserve the original structure of the program during goto
removal [Ramshaw 88]. These techniques use control flow graphs, an early precursor to,
and important subrepresentation of, PDGs.

Automatic restructuring systems such as SUPERSTRUCTURE [Morgan 84] and RE-

CODER [Federal Software Management Support Center 87] have successfully exploited
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const Terminate = 0;
const A = 1;
const Al = 2;

flag := 4;
A: while flag "= Terminate do
<el> case flag of
if <b1> then A:
goto A; <el>
<e2> if <b1> then
if <b2> then flag := A;
goto A; else
flag := A1l;
Al:
<e2>
if <b2> then
flag := A;
else
flag := Terminate;
end;
end;

Figure 6.1: Same program with gotos (left) and simulating gotos (right)

reorganizing program structure by removing or block-structuring gotos to aid in the
maintainability of goto-laden programs. These tools are batch-oriented, avoiding the
need for user input. Although this approach has shown some benefit in experiments, if
the program was built with structure in mind, the system’s restructuring distorted this
structure and the programmers preferred the original version [Federal Software Manage-

ment Support Center 87].

Although useful as a first step for programs with gotos, restructuring control is limited
in usefulness. The relationships among data, functions, and types are of interest, but
they are not addressed. Also, these batch techniques do not address aspects of structure

that are not easy to quantify, such as restructuring towards a particular enhancement.
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6.2 Transformational Programming

Introduced in the 1970’s, transformational programming, also known as derivational
programming, feeds a functional specification of an intended computation to a transfor-
mation system that, with guidance from a “programmer”, rewrites the specification into
an efficient program [Burstall & Darlington 77]. Thus most of the development effort is
focused on the specification rather than programming, and there is a guarantee that the
program satisfies the specification. The use of transformation is the key similarity with

the restructuring work. Some basic transformations are:

e Unfolding substitutes a function’s definition in place of its uses. Unfolding can
expose identities that allow other transformations to happen, leading ultimately to

its inverse, Folding.

e Abstraction substitutes a variable for every instance of an expression, and defines
that variable to be the value of that expression. This exposes similarities in the

code.

e Instantiation substitutes a value or expression for a parameter. This permits

splitting a problem into cases, such as a base-case and recursive case.

The analogues of these transformations in the restructuring work are generalized to
handle the semantics of imperative programming languages. Recognizing the possibility
to fold has the same equivalence problem as global-substitute-function, and appears
to use a similar pattern-matching technique.!

A significant detriment to transformational programming is the large number of trans-
formations that must be applied to derive a program. This is not as severe a problem in
restructuring because restructuring does not need to transform through successive lan-
guage levels and also transform within a language. The transformation between language

levels is essentially the choice of implementation at the lower level for the specification at

!The presence of referential transparency in this domain does not help. Program equivalence is
undecidable due to looping, or equivalently, recursion, which is what functional languages use to iterate.
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the higher level. Also, transformational programming makes more use of the algebraic

knowledge of types, which although important for equivalence, do not affect locality.

Another problem is the large catalogue of transformations that must be available for
deriving programs. The catalogues are large enough to make it difficult to find appropri-
ate transformations to apply. The reason this occurs is that there are large, potentially
unbounded, numbers of appropriate implementations (choice of representation and algo-
rithm) for a specification. Local transformations must also be supported. This is not a
serious problem in the restructuring domain because the catalogue is practically bounded

by the size of the language’s syntax.

Recent work in derivational programming has attempted to alleviate the tedium of
choosing and applying transformations by building up higher-level transformations from
primitives [Feather 84][Barstow 85]. For example, M.S. Feather developed a technique
that uses a pattern to express the goal of a transformation [Feather 84]. Using a goal
pattern, a tool can select the appropriate primitive transformations to compose to achieve

the goal. Such techniques might be applicable to restructuring.

Other work has focused on trying to lower the costs of redevelopment by automating
rederivation of a program from a modified specification [Feather 90]. The basic idea is
to reuse the transformation sequence from the initial development to automate the pro-
gramming tasks of maintenance. There are doubts about the success of these techniques
because it appears that the ordering of transformations is brittle with respect to changes
in the specification [Narayanaswamy & Cohen 91]. To avoid this problem, and the oth-
ers cited above, the AP5 system uses declarative annotations that help the compiler
choose transformations to derive an efficient program. This frees the programmer from
transformation tasks, and an annotation needs to be changed only when the usage of
the annotated program component changes. The specification and implementation are
still separated, but the downside is that the specification language must be lower-level

for this technique to produce efficient programs.
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6.3 Knowledge Representation Enhancement

A package of tools for performing structural enhancements of a knowledge representation
system [Balzer 85] has the same motivations as the research described in this thesis,
but in a narrower domain. The tools exploit the highly structured, declarative domain
model of a knowledge base to infer the changes to assumptions caused by a structural
enhancement. A tool locates the representations that use these assumptions, so the
programmer can update them. In some cases the system can perform the update as well,

but lets the user provide additional input if more of a change is desired.

The changes supported are on types and attributes, and include changing the su-
pertype of a type, or moving an attribute between types. The updates to the model
are made to not only the declarations and the code that uses them, but also to the
existing data modeled by the knowledge representation—an aspect not addressed in the
restructuring work. Changing the type of an attribute can require translating the orig-
inal values of the attribute into values of the new type. This can be automated when

sufficient information about the relationship between the types is available.

It is not the intention of the tools operations to preserve meaning per se; the propaga-
tion of changes proceeds only one step to direct the programmer to the directly affected
locations. Thus the changes in structure and the change in meaning they allow are in-
tended to go hand-in-hand. This is in contrast to the style of restructuring described in
this thesis, which propagates the changes of the compensating transformations if neces-
sary to preserve meaning. This difference is philosophically significant, as it is widely
agreed that global changes are subject to error [Parnas 72][Belady & Lehman 71], al-
though at least with Balzer’s work the user is directed to the sites potentially requiring
change. It also requires significantly more work on the part of the engineer. Finally, if
the user compensations are not preserving meaning, and they are global, then interfaces
of the changed object are not being made any more robust; future change is not likely
to be any more localized. That is, if the enhancement cannot be made locally, then

the modified abstraction is poorly designed by Parnas’s standards [Parnas 72] and the
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restructuring has not improved this, either. Although structural enhancements may not
require locality of change because of the tool, functional enhancements can receive no
aid from the restructuring tool, and so will require manual global change. This sug-
gests, then, that the most reasonable action in the user-driven compensations is to make
meaning-preserving compensations that localize future changes.

The semantics of type structure and attribute structure can be handled by the tech-
niques described in this thesis, although they are not aspects that are so readily ex-
emplified in Scheme. An area of future research is restructuring for a language with a
hierarchical, extensible type structure so that reorganizing the type structure, not just

subtyping, can be applied easily (see Chapter 7.7.2).

6.4 Vertical Migration and Good System Structure

One concern about “good” structure is that it can incur high execution cost overhead.
John Stankovic investigated the tradeoffs between good structure and performance,
developing an execution cost model based on structure, and a structuring technique
called vertical migration to improve performance in selected portions of code [Stankovic
79][Stankovic 82]. To help identify modules that would benefit from vertical migration,
Stankovic implemented an analysis tool based on the cost model. He also described a
subset of transformations for improving program structure.

The cost model views a system as several layers of virtual machine, and each layer
can call only the layer below it. The cost of a call from one layer into the next is broken
into three parts, a prologue that performs some set-up or perhaps checking on entry to
the layer, the execution of the function called, and an epilogue executed on exit from the
layer. For example, calling into a layer could cross an address space boundary, requiring
a context switch in the prologue and again in the epilogue when returning. This model
exposes two causes for unnecessary execution overhead. One, when one layer makes
multiple calls from one layer to the next, the prologue and epilogue are executed on each

call. Two, if a layer wishes to call a function two layers down, it must go through the



133

intervening layer, incurring the cost of its epilogue and prologue.

Vertical migration is the process of moving function from one layer down to the next
layer, in the process removing unnecessary overhead. For example, if the layer 1 call
P;; makes two successive calls Py, and Py, to layer 0, then a single function Pj;’ can be
created in layer 0 that incorporates the two calls, and layer 2 may call it directly rather
than calling Py1. This cuts the two calls into layer 0 down to one, and removes the call
into layer 1 altogether. Additional savings are possible if the generality of the separate
Po1 and Pys functions is not required, and the implementation can be optimized in their

absence.

One downside to vertical migration is that it violates the layering methodology by
allowing layer n + 1 to call into n — 1 directly. Good documentation techniques can help
overcome this problem. Another downside is that if generality is optimized away, then
enhancements requiring this generality will require additional reimplementation effort.

Of course, this is acceptable if the improvement in performance is highly desired.

Stankovic performed experiments showing that improving a system’s structure through
manual transformation, and then selectively migrating function to improve performance,
yielded better overall structure and improved execution time in comparison to the orig-

inal system.

Stankovic claims that restructuring cannot be automated because the choice of ap-
propriate structure requires human judgment. What he failed to distinguish was the au-
tomation of transformations and the choice of what transformations are applied where.
This thesis has automated the former without sacrificing human control over the latter.
On the other hand, the vertical migration transformations, although meaning preserv-
ing, cannot be automated in the style presented in the thesis. This is because vertical
migration eliminates execution of prologue and epilogue code, which cannot be described

with the existing PDG substitution rules.
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6.5 Program Understanding

Restructuring is a tool-oriented, manipulative technique for aiding maintenance. Pro-
gram understanding is an analytic tool-oriented technique for aiding maintenance. Pro-
gram understanding techniques—also sometimes called reverse engineering—such as
graphical display of program structure [Cleveland 89], inferring abstractions [Rich &
Waters 88], or assessing modularity [Schwanke 91][Embley & Woodfield 88] are used to
extract program information in a more understandable or reusable form [Lewis 90].

Improving a programmer’s understanding of a system makes its existing structure
clearer—and hence better—just by making it better understood [Belady & Lehman
71] [Arnold 86]. Recall this is modeled by DAL in Belady and Lehman’s maintenance
cost equation (See Chapter 1.4.2). Although learning has limits on clarifying structure—
because of the increasing amount of time required for increasingly complex programs—it
requires no change to the system, which is advantageous in the short term.

More importantly, a program understanding tool can help an engineer navigate and
understand a system that may need to be restructured. Also, after restructuring it
can accelerate re-educating programmers about the system’s new structure. This is an
almost essential complement to tool-assisted restructuring to counter the potential drop
in DAL.

At another level, an intelligent tool might be able automate the choices of transfor-
mations (See Section 6.2 and Chapter 7.1), or the actual desired structure. The latter
will be very difficult because what constitutes “good” structure is difficult to quantify,
and is dependent on future changes that are often unknown and perhaps not describable
to a tool, anyway. The Programmer’s Apprentice [Rich & Waters 88], a knowledge-based
inferencing tool, generates plans from programming clichés that allow them to be reused
in developing new code. However, the programmer still must choose when use of the
plan is appropriate.

Many program understanding tools, such as slicers for debugging [Weiser 84] [Agrawal

& Horgan 90], use PDGs or other flow analysis representations. This provides significant
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leverage for providing various tools at low cost, since they can share complex components.

6.6 Summary

The knowledge-base restructurer, the research most related to the restructuring work,
takes a significant functional departure from the techniques proposed here in order to
allow a wider range of compensation. The cost of the added flexibility is loss of automated
meaning-preservation and error-prevention, involving the user in the compensations and
debugging. It also does not help create locality of change in evolving abstractions.

The lessons from transformational programming has influenced this work. Although
the restructuring domain is different, the potential problems with interactive transfor-
mation must be explored. The lesson to avoid a large transformation set has resulted
in this research not focusing on local transformations. These can be handled manually
with little difficulty, anyway.

The related work described throughout this thesis suggests that transformation and
representations related to flow analysis are central ideas in improving programs. This
commonality may allow building an environment that shares the code and data related to
implementing these activities, lowering implementation costs of building transformation
and analysis tools and also improving their interaction and performance.

Within this common basis there is significant variance, too. Compiler tools tend to
be batch-oriented, and do not normally transform program source or transform glob-
ally. Program understanding tools are, largely, non-manipulative tools. This variance
suggests that finding a common descriptive model or building an environment to share

representation will be challenging.



Chapter 7

Limits and Extensions

Restructuring to aid maintenance is a broad topic. The research described thus far has
been targeted to a simple language, the implemented tool is only a prototype, and exten-
sive experiments have not been completed. There are also potentially more fundamental
limits to the described research on flow analysis. Many of these limits suggest extensions
to the current work; other extensions are suggested by applying this work to problems

with slightly different motivations.

7.1 Low-Level Interface

Automating transformations avoids the error-prone details of restructuring, however the
engineer still must recognize the relationships between the current structure and the
goal structure, and then pick the transformations that will reach the goal. A higher
level approach, similar to Feather’s techniques [Feather 84] described in Chapter 6.2,
would allow specifying a goal structure, and then tool could use the taxonomy’s formal
relationships between structures to choose the transformations.

Also, the interface of the current tool is command-driven rather than window-based.
This is not inherent in the approach, and selection of objects and operations can be

handled much more cleanly with windows and a mouse. However, the presentation of



137

the program is still at the level of the implementation. This may show more detail than
is desirable for restructuring—the tool user in many cases is thinking in terms of module

structure and overall architecture [Shaw 89].

One obstruction to presenting an architectural view is the lack of high-level constructs
in programming languages, which often do not go beyond the module level to describe
properties such as layering and other salient relationships [Shaw 89]. Without this lin-
guistic (i.e., syntactic) basis, it is difficult to build predictable, precise, high-level models
for manipulation. As described in Chapter 2.4, the basis for restructuring transforma-
tions is the set of syntactic forms in the language. Given this basis, it is not difficult
to find structurally revealing presentations of those forms that can serve as the basis
for restructuring. For example, a box-and-arrow view of scope and module structure
would be revealing and easy to formulate. So, to the extent that the programming lan-
guage provides the basis for high-level structures, a restructuring tool can exploit them

in compelling display to the tool user.

A simpler way to raise the level of the interface is to combine existing transformations
into new ones. Since transformations are meaning preserving, the technical difficulties
in combining them are not severe. The major impediment is that typically all subtrans-
formations must succeed for the composite transformation to succeed; a transaction
mechanism of some sort is required for backing out of a partially completed sequence,

as describe in Chapter 5.6.

A step beyond backing out of failed composite transformations is a general undo
mechanism for transformations. This is necessary for incorrectly applied transformations,
or if a partially completed sequence of transformations will not be able to yield the
desired structure. A way to support undo, and also backing out of partially completed
transformations, is to retain prior versions of the AST and PDG, and then to allow
reverting the current state to prior versions. A critical concern here is the amount of
space required, since PDGs can be rather large [Ferrante et al. 87]. Recently a technique

has been derived for making linked data structures retain versions [Driscoll et al. 89].
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The key advantages of this result is that it applies to all data structures of a node-
and-pointer variety (such as PDGs), and the amortized cost of maintaining versions is a
small constant for each update to a node. As an alternative to storing data to support
undo, the tool could exploit knowledge about the invertibility of applied transformations,
performing undo by performing the inverses of prior operations in last-in-first-out order.
This in general is possible because the transformations do not change (in particular
delete) any value-changing operations that would have to be recalled through raw data

storage.

7.2 Requiring Preservation of Meaning

For some kinds of changes it may not be desirable or possible to preserve meaning while
restructuring. However, there are properties pertaining to the preservation of meaning
that need to be preserved. For instance, changing an algorithm can make slight changes
to the meaning of the program. Consider changing a hashing algorithm from open to
closed hashing. Closed hashing may be faster, but will fail when the number of elements
exceeds the number of hash slots.

Of course restructuring can facilitate an algorithm change by gathering the algo-
rithm’s data representation and control components into a module. But what about
helping to preserve meaning (globally) while the module is being functionally modified?
A potential solution would be to allow the module to be enhanced and preserve mean-
ing for everything outside it. So when changing the algorithm, changes to flows inside
the module would be allowed, but changes outside it would not. An enhanced restruc-
turing tool could assure this by checking equivalence with respect to the subset of the
program variables residing outside the algorithm’s module. In a sense, the tool would
be operating on a slice [Weiser 84] [Horwitz et al. 90] of the program. It is powerful
because it would allow localized enhancement, but globally checks equivalence. What is
lacking is any way of performing global compensation when it is detected that there is a

global effect, since the intent of the programmer’s change is not precisely knowable. A
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potential problem with this approach is keeping the PDG up to date in pace with the
programmer’s changes (See 7.4, below).

Another dimension to explore in breaking down the requirement for preserving mean-
ing would be a tool that performs global enhancements—global changes that are not
intended to preserve meaning. This is contrary to Parnas’s claim that to reason effec-
tively about changes requires them to be within a module. Of course, with a tool to
help with the changes, this claim might no longer be valid. However, the domain of
enhancements is infinite, while the domain of meaning-preserving changes is much more
contained. Effectively automating activities in such an unrestricted domain is an open
problem.

The notion of preserving meaning is the primary lever for globalizing transformations
and preventing errors from being introduced, so it is more of an advantage than a limit,
and other global program manipulation techniques will be challenged to provide the
kinds of guarantees that programmers need to feel comfortable about global changes to

code.

7.3 Requiring Flow Preservation

In this thesis’s approach, no change to the structure is allowed to modify the flow prop-
erties of the program, even if it preserves meaning. There are two dimensions to this
constraint: value-changing operations cannot be changed, and the meaning of the im-
plementation is being preserved.

It is possible to augment flow preservation with type-oriented algebraic laws [Hoare
et al. 87], which would allow reasoning not only about the identity of flows and opera-
tions, but about what operations do to flows. This is not a drastic change in the flow
model. For example, a law such as z + 0 = z (See Figure 7.1) for integers reduces one
group of flows to another. This law would have allowed carrying restructuring one step
beyond localizing miles-rolled in the transit example.

One difficulty with type-algebraic laws is that laws for a type created by the pro-
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Figure 7.1: Graph representation of x + 0 = z

grammer are not known a priori. To achieve generality requires the system to derive

these laws, or more practically, to allow the programmer to declare them.

The local character of many of these transformations makes them relatively easy to
apply by hand, so they lack some of the benefits of automated non-local transformations.
However, having them present in the tool can connect other non-local restructuring
transformations without having to apply more general PDG reconstruction techniques
(see the next section). Since algebraic rewrites are naturally local (even if their checks

may not be), they should not interfere with keeping the PDG up to date incrementally.

A more technically difficult problem is that the implementation meaning of the pro-
gram is being preserved with the PDG-based flow model. An implementation is just
one valid interpretation of a specification, and a restructuring might be easier if it were
possible to migrate to another interpretation. This might allow changing an algorithm,
as discussed in the previous section. For example, choosing an arbitrary element from
a set may be modeled in an implementation by retrieving the element that is quickest
to access—such as the first element in a list representation. A model of meaning based
on the specification of a program would be more flexible, allowing other elements to be
selected with different representations. This is roughly equivalent to algebraically based
restructuring in that the properties allowed by this looser model are much harder to
take advantage of automatically. For example, in specifications, many properties are
specified in a non-constructive, non-deterministic fashion. Determining that a change in

implementation corresponds to the specification could involve a non-trivial proof.
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7.4 Power and Speed of Flow Analysis

Restructuring large programs is the ultimate goal, so issues of time and space are critical.
Basing the preservation of meaning on the PDG representation and our chosen imple-
mentation of it places necessary restrictions on what is practically feasible. Certain
dependences, such as those introduced by procedure parameters [Shivers 88] or point-
ers [Larus 89], have proved costly to model precisely, and require approximate analyses
that introduce spurious dependences.

Where the power of the particular flow analysis implementation falls short, the system
can use other knowledge to augment the analysis. For example, the system can recall
identity properties of elements it copied, and know the semantics of structures created
by restructuring. Also, input from the user can help when the system is faced with
spurious failure. This could take the form of answers to queries by the system when it is
stuck, or annotations provided by the tool user. In this case, testing after restructuring
can help find errors and improve confidence that meaning was preserved. Existing test
cases would apply if restructuring occurred in the absence of functional maintenance.

The prototype currently reconstructs most of the PDG from scratch after most trans-
formations. Chapter 4.5 describes how the substitution rules enable incremental update
of the PDG during restructuring, rather than in toto, as the current prototype does.
This is currently implemented for two of the simpler transformations, move-expr and
rename-variable. The implementation of the incremental update for move-expr is de-
scribed in Chapter 5.6. The time to execute these on a two hundred line program is
several seconds rather than several minutes. With a different implementation language
or more efficient representations this time would be smaller.

Space can also be a problem with PDGs. The current CL/CLOS implementation of
the restructuring tool has made no effort to save space, allocating regular arrays where
sparse ones may be appropriate, etc. Using another language could save significantly on
space, as well. Lazily constructing portions of the PDG on demand [Venkatesh 91] could

save both space and time.



142

If enhancements and repair are freely interleaved with restructuring, more general
incremental and lazy flow analysis are necessary to increase performance substantially.
There is now a significant effort in the compiler and programming environments com-
munity to incrementalize flow analysis [Burke 90] [Burke & Ryder 90] [Ryder & Paull
88].

Finally, even if poor performance remains a detriment in the future, the flow compu-
tation is precisely the kind of effort necessary to assure a given restructuring preserves
meaning, but it is more time-consuming and difficult for the engineer than the computer.
When the programmer makes a mistake performing this analysis the tree of change strata
is augmented (See Chapter 1.4.2); protracted debugging may be required to debug the
program. The computer time dedicated to accuracy is paid back in reliability and time

saved in debugging.

7.5 Help Implementing Transformations

The preceding section outlined why combining existing transformations to build higher-
level transformations should not be difficult. However, adding a new bottom-level trans-
formation to the tool is not a trivial task. In particular, the tool provides no help in
assuring that the transformations actually preserve meaning. The justification of the
correctness is left to the tool builder, using the definition of PDGs, the commutative
diagram, and the globalization equation as aids.

More formal support for showing transformations correct could depend on a theory
of precisely how a text transformation in general maps to a PDG and showing that the
PDG substitution rules are correct. A formal framework might enable a theorem prover
to automate the proof that a transformation preserves meaning.

There has been some work on this based on denotational [Cartwright & Felleisen 89]
and operational [Selke 90] semantics of PDGs, but this avenue has not been explored
in this restructuring research. The work on the denotational semantics of PDGs used a

staging analysis to separate a program denotation into a PDG derivation and an inter-
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preter for the PDG. By providing a denotational language description that has a PDG
intermediate form, this research has formalized the relationship between a programming
language and the PDG notation.

One possible approach using denotations for designing transformations would be to
modify the staged denotation of a language to allow describing transformations. Such
an approach has been used to denotationally define program slices [Venkatesh 91]. Then
it may be possible to use the denotational framework to show that a transformation
preserves meaning, and also derive both the program and PDG versions of the transfor-
mation. (Note that even if denotational semantics could be used to prove transformations
correct independent of the PDG, it would still be desirable to use the PDG abstraction
as an efficient representation for performing queries.)

A constructive aid to building a transformations is the significant library of subtrans-
formations and semantic checks already used in other transformations. For example, a
check such as the legality of moving an expression—common to most transformations—

was difficult to implement, but is reusable.

7.6 Multiple Views

Given that there is no one right structure for a program (see Chapter 1.4.1), support-
ing multiple, simultaneous, updatable views—structures—of a program naturally arises.
Views allow providing multiple abstractions so that two agents may access the same
data structure in different fashions, either for convenience or protection [Garlan 87]. For
views to be effective in restructuring, the tool user must be able to make an arbitrary
change to any view and have the changes propagated automatically to the other views.

This would be difficult to implement using the current restructuring model. It is
not apparent that the transformations used to construct an alternative view can be in-
crementalized to efficiently accommodate changes to it. Also, the transformations may
be brittle—small changes to the base program might require a new phrasing of the

transformations to construct the same view, not unlike the problems with retransforma-
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tion [Narayanaswamy & Cohen 91] (See Chapter 6.2).

As with normal restructuring, a change to an object in a view requires propagating it
to alternate views. Propagation would require knowing what a change operation in one
view must be in an alternate view, and what components must be compensated. Thus a
first step to supporting views would be developing the technology to maintain the map-
ping between components in two different structurings of a program. This could be built
on the techniques of event-mediator integration and relations described in Chapter 5.6.
Once mapping is possible it will be necessary to figure out how to translate operations
between views. This is similar to the process of translating transformations between
Scheme and the PDG, as described by the commutative diagram in Chapter 4. The
primary difference is that the relation between two views must be creatable dynamically,
whereas the relation between the Scheme and PDG views was created statically by hand.

A more mathematical basis is required to support constructing views dynamically.

7.7 Transforming Other Structural Forms

The work in this thesis has focused on transformation of the syntactic constructs of a
block-structured language. For the techniques described to be widely useful requires that
they be applicable to languages with modules, classes, and hierarchical type structures.
The application of these techniques to programs written in functional and logic languages
is not explored here, except to note that (1) similar techniques to those explored here
should work, and (2) it should be easier to apply restructuring in these domains because
of their algebraic transparency, which can allow direct application of transformations to

the text without reference to a secondary representation of the program.

7.7.1 Modules

Modules are a natural generalization of procedures and nested scopes. A module’s in-
terface is a set of procedures and perhaps variables. Other procedures and data may

be hidden below this interface. The generality of modules permits using them to finely
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control structure at a large scale. Since scale is a primary contributor to program com-
plexity, this makes modules particularly valuable. The kinds of transformations that
are necessary for revamping module structure are hiding a previously visible component,
moving elements between modules, splitting a module or merging two modules.
Suppose a module mechanism that groups a collection of expressions and gives them
a name, module A; allows exporting the names of the objects in the group, export f,
g;; and allows other modules to use it, use A. References to external names requires
the exporting module’s name as a suffix, A:g. This is simple but represents the basic

properties that need to be manipulated. Now consider some transformations on modules.

Hiding and abstraction. To hide a component that should not be accessible to
external modules in its current form requires abstraction, since some kind of access to
it must be possible if it is of any importance. For example, consider a variable exported
from a module to allow access to it. The lessons of information hiding suggest that
hiding this data item within its module and exporting some functions in its place is
a more robust interface [Parnas 72]. Repeated function extraction can remove all the
external accesses to the variable. Since it is likely that some accesses are coded more
than once, scope-subst-call will be required to replace redundant codings with the
same call.

Recall the transit example, in which the bus module had exported references to
variable miles-rolled. Exposing this as a variable required some non-local changes
(such as in the tracking module) to add ferry miles. So exporting a variable was
not a good design. This problem was solved by globally extracting the miles-rolled
references into a function into miles-rolled, so future changes to the representation
were localized within the bus module. After the extraction was complete, to guarantee
that the variable is truly hidden requires removing the export of the variable. This can
be handled by a transformation remove-export that checks that the exported variable
is not accessed outside the module, and then removes the export declaration.

Supporting inter-module function extraction would require a small extension to the
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current extract-function transformation. In conjunction with creating the function,
an export of the function must be generated so it is visible at the point of extraction.
This is a new contour operation, possible (and necessary) because modules do not explic-
itly export symbols the way nested scopes do. To continue using the transit example,
consider when total-miles is extracted from references to rolled-miles. The tool
must generate an export total-miles in the bus module so total-miles is visible in
the tracking module. No modification of imports is necessary because the presence of

the extracted code in transit means that bus already must be imported.

Move. Moving an element between modules (say moving £ between modules A and B)
can be invoked by the engineer as move-expr is in the current tool, but some extra tool
action is required. In particular if the element is exported, and used by other modules,
it is necessary for the tool to check that each uses module B, or that the necessary use
B declarations are added. These are non-local checks and changes. Also, if £ is the only
element accessed by a module, it may be desirable to remove the use A declaration.
Since these alternatives have different structural results, different transformations need
to be implemented for the different choices. Alternatively the tool can interact with the

tool user so that it makes only the changes that the user desires.

Split. Splitting a module is like creating a new empty module and moving several
elements into it, except here it is more likely that the intent is to modify use declarations

extensively.

Merge. Again, this is like moving, except that all of the components of one module

are moved into another, with substantial reworking of use declarations.

Although these transformations are simple, they are valuable because of the scale and
volume at which they may be applied. The distance between the non-local updates, in
terms of the number lines of code or the number of files can be quite large. Also, the

number of non-local updates and the scope conflicts in a single move may be large.
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7.7.2 Class Hierarchies

The key property of a class hierarchy is the sharing of implementation and the polymor-
phism that results from the overlapping of shared interfaces. In particular, if an object
is seeking a method to invoke then it looks in the class hierarchy: first in the class of the
object that the method is being invoked on, and then in its superclass, and so forth until
the desired method is found or the root is reached. This upward tree search is a struc-
turally rich metaphor, and any manipulation of the tree that preserves the properties of

the search will preserve meaning.

During development and enhancement, a class hierarchy can be used as a mechanism
to add function without changing existing code. The result may be that the hierarchy
represents the implementation history of the program. However, it is generally desirable
for the hierarchy to represent the type structure of the application domain, in spite of this
tendency [Johnson & Foote 88]. Automated restructuring can help manage the tension
between the two uses [Opdyke & Johnson 90]. Also, discovery of design errors may
suggest changing the interface of a superclass method, resulting in restructuring. Such
a change would propagate to subclass definitions of the method and to all uses of the
methods. Such migration and repair requires transformations to merge subclasses with
superclasses, and perhaps moving function out of superclasses into subclasses, as well as

the generalized versions of transformations already discussed for pascal-like languages.

A significant challenge to supporting restructuring for a class-based language is the
effect that polymorphism has on the control-flow graph. Since at any call point any
number of methods with the same name may be denoted, the branching in the graph
is significant, and so any transformation must satisfy the constraints of all those meth-
ods, not just one. Fortunately, type and data flow information can be used to refine
the control-flow graph significantly [Chambers & Ungar 90], eliminating much of the

branching effect. Only actual experience will reveal, however, if this will be sufficient.

The class hierarchy can complicate the actual transformations, also. In particular,

any manipulation of a class method may imply similar changes to every subclass redefi-
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nition of that method.

Extracting a method. Asan example of this additional complexity, consider a trans-
formation for extracting a method from inline code. Consider the program fragment
below, which defines a class method ratio for class ¢, and one also for c’s subclass s.
Suppose the engineer decides that the constant 0.5 in c::ratio needs to be extracted
into a new method c::factor.! A natural implication is that this new method should
return 0.5 for calls inside c::ratio, but 0.4 inside s::ratio. In other words, multiple

methods need to be extracted.

(* superclass method *)
method c::ratio ()

return self.x * 0.5;
end

(* subclass method *)
method s::ratio ()

return self.x * 0.4;
end

obj.ratio(); (* a call to method ratio *)

One way this can be handled is to generalize extract-function to transformation
extract-method, which is capable of extracting a method for the initial extraction,
and also others for subclasses. In the example, the context of the initial extraction is
c::ratio, so in subclass s the implied context for extraction is s::ratio. Finding the
embedded expression to extract in this definition is not necessarily trivial. In fact, this
is a more general case of the program equivalence problem described in Chapter 2.4 for

transformation scope-sub-call. Similar solutions to those in scope-sub-call can be

'A variation of this example and the ones following were suggested in the context of describing
transformations that can be used to assure a program obeys the Law of Demeter [Lieberherr et al. 88].
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used, such as using the output type or the usage of the initially selected expression (0.5)
to narrow the possibilities. These would work for the example above, but since the algo-
rithm is a heuristic, final approval of the tool’s choice by the engineer is necessary. The
result, after the engineer approves the tool’s additional extraction of 0.4 for s: :factor,

is:

(* superclass method *)
method c::ratio ()

return self.x * self.factor();
end

method c::factor ()
return 0.5;
end

(* subclass method *)
method s::ratio ()

return self.x * self.factor();
end

method s::factor ()
return 0.4;
end

obj.ratio(); (* a call to method ratio *)

extract-method has the same structural benefit as extract-function—introducing
abstraction to hide details—but the presence of the hierarchy allows compensating mul-
tiple definitions as well as multiple uses, increasing the non-local character of the trans-
formation. The multiple definition compensation also makes the resulting abstraction
more complete: in the ratio example not only was the embedded constant removed in

both methods, but both constants were merged into the same abstraction.
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Adding a method parameter. Now consider generalizing the interface of a method
that is defined in a superclass and redefined in subclasses. This is like the transformation
expr-to-binding described in Chapter 2.4, but like extract-method requires doing the
abstraction on more than one definition, and in a consistent fashion.

Starting with the same initial program fragment as in the previous example, it is
desired to abstract the factor 0.5 from c: :ratio. It is implied that the subclass method
s::ratio must be similarly transformed for the interfaces to remain syntactically con-
sistent.

As with method extraction, since the two definitions of the ratio do not have the
same implementation, finding the embedded expression to extract in each definition is
complicated. Worse, since either definition of ratio may be invoked in the call at the
end of the fragment, neither one or the other abstracted expression can be put in at the
call site if meaning is to be preserved. One heuristic is for the tool to ask the user if one
expression subsumes the other, and to use that as the abstracted value for all of them.
Another is for the tool to use type inference to determine if there is only one method
that is really callable at the site.

A simpler solution is for the engineer to first apply the method extraction used in

the previous example to avoid the problem:

(* superclass method *)
method c::ratio ()

return self.x * self.factor();
end

method c::factor ()
return 0.5;
end

(* subclass method *)
method s::ratio ()

return self.x * self.factor();
end

method s::factor ()
return 0.4;
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end

obj.ratio(); (* a call to method ratio *)

Now the expressions to be extracted are identical, so self.factor may be success-

fully abstracted and substituted in the call:

(* superclass method *)
method c::ratio (fact)

return self.x * fact;
end

method c::factor ()
return 0.5;
end

(* subclass method *)
method s::ratio ()

return self.x * fact;
end

method s::factor ()
return 0.4;
end

obj.ratio(obj.factor()); (* call to generalized ratio *)

The bottom line is that the class version of this transformation is virtually identical
to the original, but as with method extraction the compensations involve multiple defini-
tions, as well as multiple uses, increasing the non-local character of the transformation.
Unlike method extraction, however, the change is in the interface of the method, so the

compensations are necessary for the program to remain syntactically legal.
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Popping. This is moving a method (or instance variable) up from a class to its super-
class. This presents little problem unless the method already exists in the superclass,
or in sibling classes that may need to be moved up, too. Here, as with global function
extraction, it is necessary to recognize equivalently coded functions to see if they can be
successfully merged in the superclass.

One possible conflict for popping a method is that each subclass version of the method
has an embedded constant in its version that is different from the others [Lieberherr
et al. 88]. Consider for example a method ratio implemented in two subclasses, one

embedding a reference to 0.5 the other 0.4:

method si::ratio () method s2::ratio ()
return self.x * 0.5; return self.x * 0.4;
end end
obj.ratio(); (* a call to method ratio *)

where s1 and s2 are subclasses of class c. To allow popping requires three steps.
The first hides the ratio call in another subclass method via extract-method, which

can apply extract-function multiple times on subclass methods:

method si::ratio () method s2::ratio ()
return self.x * 0.5; return self.x * 0.4;

end end

method si::myratio () method s2::myratio ()
return self.ratio(); return self.ratio();

end end

obj.myratio(); (* call modified to call myratio *)
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The second step abstracts the constant in each ratio method implementation as a

parameter via expr-to-binding to create a more general interface:

method si::ratio (factor) method s2::ratio (factor)
return self.x * factor; return self.x * factor;
end end
method si::myratio () method s2::myratio ()
return self.ratio(0.5); return self.ratio(0.4);
end end
obj.myratio(); (* call not affected by abstraction *)

After this the ratio methods are equivalent, and may be popped up to c:

method c::ratio (factor)
return self.x * factor;

end
method si::myratio () method s2::myratio ()
return self.ratio(0.5); return self.ratio(0.4);
end end
obj.myratio(); (* call not affected by pop *)

Pushing. Pushing is moving a method or instance down the hierarchy. This is com-
plicated because, for example, it must be verified that a superclass object never actually
accesses the method to be moved (unless it is just copied down, rather than moved).
Since subclass objects can often be used in a superclass variable. Flow analysis in the

PDG can reveal if the usage of the method allows the movement.
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In contrast to popping, pushing a method may need to instantiate a parameter as an
embedded constant. Instantiation is handled by applying in reverse order the inverses
of the abstracting transformations, first the push, followed by binding-to-expr and
inline-method.

By applying multiple pops and pushes many other operations can be implemented,
such as spreading or merging sub-behavior between subclasses, or merging an entire

subclass with a superclass.

Renaming. Unlike other language structures, classes hierarchies allow many proce-
dures to be denoted by the same name, and that name may denote any of them in a call,
depending on runtime behavior. Thus to change the name of a method really means, po-
tentially, changing the name of many methods. Although it is not difficult to implement
such a transformation, it is highly non-local in that all the uses and definitions must be
found and updated, with assurance that the change does not affect any existing method

protocols.
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Conclusion

Maintenance is the most expensive component of the software process [Lientz & Swanson
80]. The structure of a program significantly influences the cost of its maintenance.
Restructuring a program can isolate a design decision in a module so that changing it will
not require costly non-local changes. Automating the non-local activities of restructuring
to make it cost-effective shows promise. In particular, this approach allows the software
engineer to locally specify source-to-source structural changes, while automating the non-
local, consistent changes that complete the restructuring. This accelerates restructuring

and avoids introducing new errors due to inconsistencies in the changes.

8.1 Critique

This thesis has shown how to build an interactive, source-to-source, meaning-preserving
restructuring tool for imperative programs that allows the engineer to locally specify a
global structural change. By successfully following the model, the implementation credits
it as a framework for understanding the relationships among the non-local changes of
a transformation. The prototype also provided a concrete basis for evaluating manual
restructuring techniques in the experiment. The experiment provided evidence that

automating restructuring should have concrete benefits by automating activities that
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tend to be haphazard when performed manually. Restructuring, however, is not yet a

mature technology:

A more formal model for maintenance and restructuring is needed. Belady and Lehman’s
work crudely predicts that automated restructuring has measurable benefits by reduc-
ing structural complexity for individual changes. A more accurate analysis requires a
micro-model of software change. Experiments in the near future will explore a program-
mer’s tendency to restructure to ease change, and what factors influence the decision
(See Chapter 3.3). These experiments will not require significant changes to the tool,

and will provide early experience for developing a micro-model.

A more formal model for transformation is required. Program dependence graphs and
their formal relation to programs via the commutative diagram supports the hypothesis
that a meaning-preserving restructuring tool can be built with reasonable performance
and reliability. The method of globalization to create program transformations from
PDG transformations is effective but informal. A more formal relation between trans-
formations on a PDG and transformations on a program would add strength to this
result. As discussed in Chapter 7.5, techniques exploiting recent work on the semantics

of PDGs seem promising [Cartwright & Felleisen 89][Selke 90][Venkatesh 91].

Transformational restructuring is low-level. After the software engineer chooses the
best structure for the next maintenance step, the transformational approach still requires
the engineer to choose the transformations that migrate the program from its existing
structure to the new structure. Chapter 7.1 suggested several techniques for countering
these problems, perhaps the most promising being a goal-directed approach to program
derivation [Feather 84], which for restructuring would allow the engineer to specify the

goal structure and let the system infer the transformations.

The relationship between restructuring and preserving meaning is unclear. The preser-

vation of meaning is a central theme of this restructuring work. Three aspects of this
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may deserve further attention. First, is preserving meaning needed as an automation
technique for restructuring? Balzer’s tool described in Chapter 6.3 leads the engineer
to the locations requiring update and performs some manipulations, but does not pre-
serve meaning. This is more flexible than this thesis’s approach, but less automatic
and provides fewer guarantees. Which approach will engineers prefer? The experiment
in Chapter 3 suggests that a guarantee of preserved meaning is valuable, but the sub-
jects were unaided except for a text editor. Balzer’s writings provide no information on
this. Second, if meaning is to be preserved, must it be the implementation meaning of
the program? For example, an approach based on preserving the specification meaning
would allow more flexibility. Discussed briefly in Chapter 7.3, the primary concern is
that specification semantics may allow too much flexibility to allow automated restruc-
turing. Third, is preserving meaning during restructuring too restrictive to be useful?
This reflects on the other two points, but also questions whether global enhancement
must be automated to successfully reduce maintenance costs. This calls Parnas’s module
work into question, but the addition of a tool to automate non-local enhancement may

qualitatively change the basis of his assumptions.

FErperience must establish that automated restructuring is cost-effective. The experi-
ment in Chapter 3 showed restructuring was haphazard and error-prone when performed
manually. Although this experiment was on a small program—where no benefit might
be seen—the differences were observable. Likewise, the restructurings of matrix multiply
(Chapter 2.5) and the KWIC indexing program (Appendix A) using the prototype have
strengthened the case for tool-aided restructuring. Certainly more thorough experiments
are required, but only long-term use will provide sure evidence of the value of tool-aided
restructuring. In either case, interactive performance, a window interface, and a more

complete and robust set of transformations are required for further progress.

Restructuring must be concretely generalized to handle large programs. The greatest

potential for restructuring lies in managing the structure of large programs. At the scale
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of thousands or millions of lines of code, the asymptotic term of exponential structural
complexity of a program will dominate, with great financial impact. Modules and classes

are two language structures that are useful for building large programs.

Chapter 7.7 introduced transformations for restructuring at the module level and
in a class-hierarchy. These transformations need to be incorporated in a tool, justified
in the model, and their success measured in use. Also, the ability to incrementally
update the tool’s underlying PDG representation using the substitution rules promises
good performance for large-scale restructuring. Increasing the scale will test this claim,
environment issues such as storage between restructuring sessions, the power of the indi-
vidual transformations, and the ability to transform in the presence of interdependences
derived from conservative dependence analysis. The techniques discussed in Chapter 7.4

will be important here.

More significantly, manual restructuring at a large scale becomes untenable, with so
many non-local relationships to keep consistent during change. The manual bookkeeping
promises to be overwhelming, so only an automating tool can flawlessly and tirelessly

restructure with a guarantee of preserving meaning.

8.2 Contributions

This thesis is a first step towards demonstrating that tool-aided restructuring can lower
the costs of maintenance. Specifically, this thesis has shown how to build an inter-
active, source-to-source, meaning-preserving program restructuring tool for imperative
programs that allows the engineer to locally specify a non-local change. The transforma-
tions do not just remove gotos; the technique supports a broad class of transformations
for localizing design decisions. Further, this thesis has proven the novel idea that pro-
gram structure can be managed by transforming the abstractions of a program without

affecting its basic computations. There are several supporting contributions:
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Using meaning-preserving transformation to automate restructuring. The macro-model
of Belady and Lehman [Belady & Lehman 71] predicts that manual restructuring will
be as costly as any other maintenance activity, primarily because it requires physically
distributed, but semantically consistent, changes to the program. Also, the experiment in
Chapter 3—observing the manual restructuring of a matrix multiply program—revealed

that manual restructuring is haphazard and error-prone.

Automating restructuring is enabled by requiring that structural changes not change
the runtime behavior of the program: preserving meaning is a precise, easy to understand,
global consistency constraint that does not permit introducing errors during restructur-
ing, and still allows changing structure. Using a transformational approach, Chapter 2
defined a set of structural changes exploiting this constraint. The transformations as a

group can manipulate structures spanning several common types.

The transformations are not new [Loveman 77][Burstall & Darlington 77][Stankovic
82], but their style of application and purpose are. A transformation is applied to a
single syntactic construct, and the tool can make the compensating changes in the rest
of the program to preserve its original meaning. This style of transformation removes
the engineer from error-prone activities without sacrificing control over the resulting
structure, unlike prior restructuring tools [Federal Software Management Support Center

87] [Morgan 84].

In addition to revealing the hazards of manual restructuring, the experiment also
confirmed that the tool automates those exact activities that are error-prone: making
consistent, physically distributed changes. It also showed that the tool’s style is con-
sistent with observed manual restructuring techniques, which should improve usability.
In particular, the common manual technique of applying copy-paste to a construct, and
then editing it and its uses is supported by the tool. The tool allows the engineer to
apply the first part of the action, with the tool completing the editing and compensations

to the uses.
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Development of a practical model for defining meaning-preserving source-to-source trans-
formations. The program dependence graph (PDG) provides exactly the semantic infor-
mation necessary to reason about non-local program changes in a local fashion. However,
the PDG lacks information on scopes, which is represented in the program text. The
model introduced in Chapter 4 defined a small set of local, meaning-preserving subgraph
substitution rules and scope manipulation rules. By relating the PDG to the program
source via the mappings of a commutative diagram, the rule set locally describes a
transformation’s physically distributed textual changes. This simplified understanding
the meaning-preserving properties of program transformations.

The globalization equation, derived from the commutative diagram, provided guid-
ance for mapping PDG transformations to program transformations during implemen-
tation. Only searches are dynamically mapped between the program and the PDG; all
updates to the program and PDG can be performed directly on each. Consequently, a
source-to-source transformation is applied directly to the program, leaving unchanged
those syntactic features of the program that are not explicitly manipulated. This is in

contrast to standard PDG unparse techniques [Horwitz et al. 90] [Larus 89].

A working implementation of a restructuring tool. Successfully implementing a restruc-
turing tool validated the claim that a restructuring transformation can be invoked lo-
cally by the engineer and compensated by a tool to preserve meaning. The tool was
successfully used on two programs: the matrix multiply used in the experiment, and
the inadequate control decomposition of KWIC. The implementation also supports the
claim that the model is a powerful tool. In particular, the model’s abstractions and the
globalization equation helped define the tool structure and reason about the correctness
of its transformations. The implementation also tested incremental update of the PDG

in two instances, evidence that a restructuring tool can be efficient.
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Appendix A

Restructuring Parnas’s KWIC

One significant restructuring has been shown in the body of the thesis. Presented here
is a second example, the KWIC indexing program, which is larger, uses a broader range
of transformations, and whose possible structures are familiar to much of the software
engineering community. The KWIC program takes a list of lines of text, and produces

a list of all circular shifts of those lines, in sorted order.

Parnas used the KWIC indexing program to demonstrate the principle of information
hiding as a criterion for module decomposition [Parnas 72]. In particular, the example
showed that modules should be chosen to isolate design decisions that are likely to change
in the future, and that typically these revolve around the choice of data representation.
Asin Parnas’s comparison, the modules are not enforced by the language, but are defined
by how programming tasks are assigned to individuals. Of course, with this simple
example a single individual can code the whole program with little trouble, but the
example is treated as though each module were assigned to a separate group or individual
to implement. Thus the primary concern is whether a desired change can be made by a
single group responsible for a single module. If not, the cost will be higher than otherwise

because of the communication necessary between groups to coordinate the change.

Loosely, the two modularizations that Parnas chose to compare were a functional

decomposition of work assignments, and a data decomposition. The functional decom-
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position had the following modules: (1) An input module for reading the lines of input
and storing them in a data structure; (2) a circular shift module for performing the circu-
lar shifts of the original input; (3) an alphabetization module for ordering the shifts; (4)
an output module for writing out the alphabetized shifts; and (5) a master control mod-
ule for ordering the execution of the other modules. A plausible Scheme implementation
of this decomposition is shown in Section A.3. It has one function for each module, with
the necessary sub-functions implemented as local functions. Data is shared between the

modules by global data structures.

For the data decomposition, Parnas chose the following module structure: (1) A line-
storage module, which supports storing and retrieving individual lines of text (by line
number), as well as routines for reporting the number of lines in the store, words in a
line, and words in the store; (2) an input module, which calls the line-storage module to
store the lines of its input; (3) a circular shifter module, which retrieves circular shifts
of (by shift number, counting from the beginning of the line-storage), but also has a
set-up routine that must be called before any shifts are retrieved; (4) an alphabetizing
module that supports a function retrieving the shifted lines (again, by numerical index)
in sorted order, and like the shifter, requires calling a set-up function first; (5) an output
module that uses the alphabetizer’s retrieval function to write out the sorted shifts; and
(6) a master control module for ordering the execution of the other modules. A plausible
Scheme implementation of this decomposition is shown in Section A.4. Basically, this
program organizes modules around data structures, each module using a small set of

functions to abstract away the representation.

Parnas emphasizes that the two decompositions can share all representation choices
and access methods—only what is isolated in a module need be different. The pro-
gram in Section A.3 differs from that in Section A.4 only by its structure. The first
decomposition makes no attempt to isolate the representations of the task modules. For
example, *line-storagex* is accessed directly by the circular shifter and the alphabet-

izer, exposing the fact that it is a list. The data decomposition, conversely, isolates the
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representation inside line access routines. Thus it is expected that the latter will be easier
to modify than the former; otherwise they are the same, using the same representations
and algorithms.

The following demonstrates that it is possible to apply meaning-preserving transfor-
mations using the restructuring tool to migrate from the functional modularization to
the data modularization. By first restructuring with the tool and then performing func-
tional changes, the tool guarantees that the meaning of the program is preserved and
performs the necessary non-local changes to preserve meaning. Thereafter, the likely
changes—those to representation, for example—are localized within a module. So al-
though the functional changes are not themselves automated, they are local, and thus
easier to reason about. This benefit is demonstrated with an example.

As in the restructuring of the matrix multiply (Chapter 2.6), the tool commands
shown below are slight variations of the actual commands used in the tool to make them
more readable. Especially, <angle braces> are used to give names to a location in the
program being restructured. See Chapter 2 for details on the tool’s user interface and

the transformations the tool supports.

A.1 The Restructuring

The most evident structural property of the functional decomposition is that almost
every module directly accesses the data of other modules, such as *1ine-storage* of
the input module. Also evident is that several functions are declared local to a module
function and need to be moved out to make them reusable across modules. In other
cases, sequences of in-line code must be abstracted as real functions before they can be
reused. The primary goal, then, is to create the appropriate abstractions to isolate all
references to exposed data. In the process, the module structure will evolve to the data
decomposition described by Parnas.

Starting with the initial functional decomposition in Section A.3, it is apparent that

the input module’s direct reference to the *line-storage* must be removed so that
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line-storage can begin to stand on its own. The first step is to move out local function

insline, which will become a function of the new line-storage module:

(move-expr <insline definition> :before <putfile definition>)
(ungroup <empty letrec>) ; remove empty letrec, too

The result, then, is this change:

(define insline
(lambda (line)
(if line (setq *line-storage* (cons line *line-storage*)) nil)))

(define putfile
(lambda (linelist)
(do ((restlist linelist (cdr restlist)))
((null? restlist)
nil)
(insline (car restlist))))) ; fixed
Note that the input module (function putfile) no longer references *line-storagex
directly, but instead calls insline, insuring that any change to the representation of the
line storage is now isolated from the input module.

Now consider the function cssetup, which contains several exposed references to

*line-storage*. One is the binding declaration

(numlines (length *line-storage*))

for iterating through the lines of the store, and another is

(set! numwords (length (list-ref *line-storage* lineno)))

used to iterate through the circular shifts of an individual line. These are extracted and

placed next to insline to become part of the line-storage module:

(extract-function <(length *line-storage*)> ’lines
:after <insline definition>)

(extract-function <(length (list-ref *line-storage* lineno))> ’words
:old-new-name-pairs (list (list <reference to lineno>))
:after <line definition>)
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So now the line-storage module consists of the original representation declaration, plus
these functions:

(define *line-storage* nil)

(define insline
(lambda (line)
(if line (setq *line-storage* (cons line *line-storage*)) nil)))

(define lines (lambda ()
(length *line-storage*)))

(define words (lambda (lineno)
(length (list-ref *list-storage* linemno))))

and cssetup now looks like:

(define cssetup (lambda ()
(letrec
((allwords (lambda (1s)
(do ((restls 1s (cdr restls))
(sum O sum))
((null? restls) sum)
(set! sum (+ sum (length (car restls))))))))

(let ((numcslines (allwords *line-storage*)) ; remaining
(cslineno 0)
(numlines (lines)) ; fixed
(numwords nil))
(set! *circ-index* (make-vector numcslines))
(do ((1lineno 0 (1+ lineno)))
((= lineno numlines)
nil)
(set! numwords (words lineno)) ; fixed
(do ((wordno 0 (1+ wordno)))
((= wordno numwords)
nil)
(vector-set! *circ-index* cslineno (list lineno wordno))
(set! cslineno (1+ cslineno))))))))

Unfortunately, there is still one reference to *line-storage* remaining in the call to
allwords. This will be fixed later on.

Now attention is turned to the circular shift module. First, the definition of the

comparison function for sorting shifted lines, csline<=, is in the alphabetizer, rather
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than in the shift module. This function contains information about how shifted lines
(and lines for that matter!) are represented. It also is hiding the functions csword
and cswords, which are quite reusable functions. The following tool commands moves

csline<= to its rightful place, and exposes csword and cswords.

(move-expr <csline<= definition> :after <#circ-index* definition>)
(move-expr <csword definition> :after <*circ-index* definition>)
(move-expr <cswords definition> :after <*circ-index* definition>)
(ungroup <empty letrec>) ; remove unneeded letrec

These functions still directly access the line store, which will be addressed later, along
with the remaining reference in cssetup. However, the function alph is now free of the
details of how lines are compared, although it still directly accesses the representation
of the circular shifter, *circ-index*, in fact in an analogous fashion to how the shifter

accessed the line store:

(let ((numitems (length *circ-index*)))

for retrieving the number of shifts, needed for allocated the alphabetization store, and

(vector-set! *alph-index* i (vector-ref *circ-index* i)))

for initializing the alphabetization store with the unsorted elements. (Fortunately, the
representation of shifts—a list containing the line number and a word number within the
line—is no longer exposed in the alphabetizer, because it is isolated within csline<=.)

These two violations of representation hiding are removed with two function extractions:

(extract-function <(length *circ-index#*)> ’cslines
:after <*circ-index* definition>)

(extract-function <(vector-ref *circ-index* i)> ’csline
:old-new-name-pairs (list (list <i reference>))
:after <*circ-index* definition>)

Although there is more restructuring to be done on it, the circular shift module begins

to shape up like this:
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(define *circ-index* nil)

(define cswords (lambda (shift 1s)
(length (list-ref 1ls (car shift)))))

(define csword
(lambda (shift wordno 1s)
(let* ((1no (car shift))
(fwno (cadr shift)))
(list-ref (list-ref 1ls 1no)
(modulo (+ fwno wordno) (length (list-ref 1s 1no)))))))

(define csline<=
(lambda (shifti shift2 1s)
(let ((lasti
(min (cswords shiftl 1ls) (cswords shift2 1s)))
(result nil)
(done? nil))
(do ((i 0 (1+ 1)))
(done?
result)
(let ((maxed? (= i lasti))
(cwordl (symbol->string (csword shiftl i 1s)))
(cword2 (symbol->string (csword shift2 i 1s))))
(if (or maxed? (not (string=? cwordl cword2)))
(begin (set! done? t)
(set! result
(if maxed? (<= lasti (cswords shift2 1ls))
(string<=? cwordl cword2))))
nil))))))

(define cssetup
(lambda ()
(letrec
((allwords
(lambda (1s)
(do ((restls 1ls (cdr restls))
(sum O sum))
((null? restls)
sum)
(set! sum (+ sum (length (car restls))))))))
(let ((numcslines (allwords *line-storage*))
(cslineno 0)
(numlines (lines))
(numwords nil))
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(set! *circ-index* (make-vector numcslines))
(do ((lineno 0 (1+ lineno)))
((= lineno numlines)
nil)
(set! numwords (words lineno))
(do ((wordno 0 (1+ wordno)))
((= wordno numwords)
nil)
(vector-set! *circ-index* cslineno (list lineno wordno))
(set! cslineno (1+ cslineno))))))))

Turning attention now to the output module, which for this simple implementa-
tion just prints out the sorted shift lines to the terminal, several violations are evident:
the function csline local to allalphcslines contains information about the repre-
sentation of shifted lines (so it can print them), allalphcslines directly accesses the
*alph-index* representation in two locations, and *1ine-storagex* is directly accessed
as well.

First the local function csline must be moved to the shift module, but this requires

renaming it first, since there is already a function by that name.

(rename-variable
<allalphcsline’s local csline definition> ’printable-csline)

(move-expr <printable-csline definition> :after <csline definition>)
(ungroup <empty letrec>) ; remove useless letrec

Next the access violations to *alph-index* must be removed: one retrieving the size of

*alph-index* the other retrieving elements of *alph-index*.
(extract-function <(vector-ref *alph-index* i)> ’alphcsline
:old-new-name-pairs (list (list <i reference>))

:after <*alph-index* definition>)

(extract-function <(length *alph-index*)> ’alphcslines
:after <#alph-index* definition>)

After these extractions, allalphcslines looks like this:

(define allalphcslines
(lambda ()
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(let ((numcslines (alphcslines)))
(do ((i 0 (1+ 1)))
((= i1 numcslines)
nil)
(printf "“s~%" (printable-csline (alphcsline i) *line-storage#*))))))

Now there is one remaining problem throughout the program, the direct references
to *1line-storage*. These permeate every module, rather than just the circular shift
module, because a shift is represented as a list containing a line number and a word
index, meaning that to actually access the shifted line for comparison or printing requires
accessing the line storage. To overcome these violations requires two steps. First, line
storage is explicitly passed to many functions, and to abstract the references to the
storage away requires inlining these parameters. Note that all of the function definitions
with these parameters are isolated in the shift module, although the functions are called
in other modules. Since the parameter is passed through more than one level, this must
be done repeatedly. Second, once the references are inlined they need to be abstracted

as functions of the line storage module. First the inlinings:

(binding-to-expr <ls parameter in csline<= definition>)
(binding-to-expr <ls parameter in cswords>)
(binding-to-expr <ls parameter in csword>)
(binding-to-expr <ls parameter in printable-csline>)
(binding-to-expr <ls parameter in allwords>)

For each to succeed requires that all the calls of the function take the same expression
as the argument to 1s. This is because each call represents an independent binding of
the parameter 1s, but when inlined it must be represented by just one parameter. Of
course, in these instances 1s is a reference to *1line-storage*. The result of inlining the
parameters is that *1ine-storage* is now explicitly referenced in all of these functions,
except csline<=, in which there is no remnant of it because its uses were transitively
inlined:

(define printable-csline

(lambda (shift)
(let* ((1no (car shift))
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(fwno (cadr shift))
(wrdent (length (list-ref *line-storage* 1lno)))
(revcs nil))
(do ((i 0 (1+ 1))
((= i wrdcnt)
nil)
(set! revcs
(cons (list-ref (list-ref *list-storage* lno)
(modulo (+ i fwno) wrdcnt)) revcs)))
(reverse revcs))))

(define cswords (lambda (shift)
(length (list-ref *line-storage* (car shift)))))

(define csword
(lambda (shift wordno)
(let* ((Ino (car shift))
(fwno (cadr shift)))
(1ist-ref (list-ref *line-storage* lno)
(modulo (+ fwno wordmo) (length (list-ref *line-storage* 1lno)))))))

(define csline<=
(lambda (shift1l shift2)
(let ((lasti (min (cswords shiftl) (cswords shift2)))
(result nil)
(done? nil))
(do ((i 0 (1+ 1)))
(done?
result)
(let ((maxed? (= i lasti))
(cwordl (symbol->string (csword shiftil i)))
(cword2 (symbol->string (csword shift2 i))))
(if (or maxed? (not (string=7? cwordl cword2)))
(begin (set! done? t)
(set! result
(if maxed? (<= lasti (cswords shift2))
(string<=? cwordl cword2))))
nil))))))

(define cssetup
(lambda ()
(letrec
((allwords
(lambda ()
(do ((restls *line-storage* (cdr restls))
(sum 0 sum))
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((null? restls)
sum)
(set! sum (+ sum (length (car restls))))))))
(let ((numcslines (allwords))
(cslineno 0)
(numlines (lines))
(numwords nil))
(set! *circ-index* (make-vector numcslines))
(do ((lineno 0 (1+ lineno)))
((= 1lineno numlines)
nil)
(set! numwords (words lineno))
(do ((wordno 0 (1+ wordno)))
((= wordno numwords)
nil)
(vector-set! *circ-index* cslineno (list lineno wordno))
(set! cslineno (1+ cslineno))))))))

To take care of the access violations in printable-csline, csword and cswords,
the accesses to *1line-storage* must now be abstracted. The expression (length
(1ist-ref #*line-storage* (car shift))) can be represented as the words function,
already extracted earlier. Likewise, the expression (list-ref *line-storage* 1lno)
in csword can be extracted as the 1line function, with a parameter for 1no of the line-

storage module. These are accomplished with the following three commands:
(scope-sub-call <words definition>)

(scope-extract-function <(list-ref *line-storage* lmno)> ’line
:old-new-name-pairs (list (list <lno reference> ’lineno))
:after <*line-storage* definition>)

(scope-sub-call <line definition>)

The transformation scope-sub-call finds all sequences of expressions in the program
that represent the same function as the one passed as the argument, and replaces the
matched expressions with a call to the function. The first transformation finds two
expressions matching words, the body of cswords, but the new line function matches
in a few of locations, including in the words function. The match in words could have

been rejected reasonably by the engineer, because the words definition is in the line-
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storage module, and so its direct access of *1ine-storage* was not an access violation,
albeit redundant. The result is:

(define line (lambda (lineno)
(l1ist-ref *line-storage* lineno)))

(define words (lambda (lineno)
(length (line lineno))))

(define printable-csline
(lambda (shift)
(let* ((1no (car shift))
(fwno (cadr shift))
(wrdent (words 1no))
(revcs nil))
(do ((i 0 (1+ 1)))
((= i wrdcnt)
nil)
(set! revcs
(cons (list-ref (line 1lno) (modulo (+ i fwno) wrdcnt)) revcs)))
(reverse revcs))))

(define cswords (lambda (shift)
(words (car shift))))

(define csword
(lambda (shift wordno)
(let* ((1no (car shift))
(fwno (cadr shift)))
(1ist-ref (line lno) (modulo (+ fwno wordno) (length (line 1no)))))))

At this point there is only one remaining access violation according to Parnas’s pre-
ferred data decomposition, the access of *1ine-storage* in function allwords, located
inside cssetup. In fact, the function itself belongs in the line-storage module, since it is
iterating through the storage, so it is moved out of cssetup:

(move-expr <allwords definition> :after <words definition>)

(ungroup <empty letrec>) ; remove empty letrec

The final result is presented in Section A.4, sans comments. It is not quite done,

actually. Although unspecified for this example, the representation of a line has not
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been isolated. For example, functions csword and printable-csline use list-ref to
access the words of a retrieved line. Changing the representation to vectors would require

changes in at least two modules.

A.2 Evaluation

The restructuring tool has successfully aided the restructuring the task-oriented imple-
mentation of KWIC to a representation-oriented structure. All the non-local changes
necessary for preserving consistency of the meaning of the program were made by the
tool, but the choice of the structure was under the control of the engineer. Parnas has
already discussed the benefits of the resulting structure [Parnas 72], but consider the
following example.

Suppose it is desired to no longer store circular shifts because they are large in
number compared to the number of regular lines. This is easy to implement because,
fascinatingly enough, the #** circularly shifted line starts with the i"* word in the line-
storage. Hence, to compute the i** shift merely requires finding the line with the i
word in the line-storage and creating a line shifted to start with that word. Although
it is not possible (using the existing tool, anyway) to restructure from the existing data
decomposition to this new implementation of circular shifts, the necessary changes are
confined to the circular shift module. On the other hand, in the original functional
decomposition the representation of shifts was dispersed through the shifter, alphabetizer
and output modules. Hence the restructuring has successfully localized a property that

was dispersed in the original. The new version should cost less to modify.

A.3 Original Control Decomposition of KWIC

23 29923 23333 23233333 2333 IIIIIIIIIINIINIIINIINIZIINIODIIINININIIINDNIINDNINDINDNINDINIINDININDIND
-
;33 INPUT MODULE

13
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333
;33 list of list of words.
333

(define *line-storage* nil)

(define putfile (lambda (linelist)
(letrec
;3 Adds a line. By convention, lineno=0 implies the first line.
;; We assume the input is a list of symbols. We convert to strings
;3 for comparisons and such.
((insline (lambda (line)
(if line (set! #line-storage* (cons line *line-storage*))))))

(do ((restlist linelist (cdr restlist)))
((null? restlist) nil)
(insline (car restlist))))))

3333333333353 3333333333533 333 33353335333353335333353533333333533333333353333333
53

;33 CIRCULAR SHIFTER

53

;33 This module creates the illusion (or reality) that the lineholder

N has had all the circular shifts of lines inserted for all lines.

HH For line i < j, all of i’s shifts come before the j’s. The shifts

- are inserted in order starting from the original line.

;55 Amazing fact: for a line with N words, there are N circular shifts.
;53 This means that shift M is the line containing the Mth word in the file,
;33 with the first word of the shift being the Mth word.

(define *circ-index* nil)

;35 Build an index of circulars. These are represented as pairs of
;3; (lineno, wordno).
(define cssetup (lambda ()
(letrec
((allwords (lambda (1s)
(do ((restls 1s (cdr restls))
(sum 0 sum))
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((null? restls) sum)
(set! sum (+ sum (length (car restls))))))))

(let ((numcslines (allwords *line-storage*))
(cslineno 0)
(numlines (length *line-storage*))
(numwords nil))
(set! *circ-index* (make-vector numcslines))
(do ((lineno 0 (1+ lineno)))
((= lineno numlines) nil)
(set! numwords (length (list-ref *line-storage* lineno)))
(do ((wordno 0 (1+ wordno)))
((= wordno numwords) nil)
(vector-set! *circ-index* cslineno (list lineno wordno))
(set! cslineno (1+ cslineno))))))))

333332333233 3333333333333333333233 233N IIIIIIIIIINIIINIIIIIIIIIIIIIIIINIINIIINIINIIINIIDINIIDNID
HE

;33 ALPHABETIZING MODULE

HE

;55 This contains function alph. It creates an array just like CS’s but
HEH is sorted.

(define *alph-index* nil)

(define alph (lambda ()
(letrec
;3 Says if shiftnol is less than or equal to shiftno2
((csline<= (lambda (shiftl shift2 1s)
(letrec
;; Return the word on line number shiftno, at word number wordno in the
;; line. Result is a string.
((csword (lambda (shift wordno 1s)
(let* ((1no (car shift))
(fwno (cadr shift))) ; number of the first word in the shift
(list-ref (list-ref 1ls 1lno)
(modulo (+ fwno wordno) (length (list-ref 1s 1no)))))))

;; Returns the number of words in line number shiftno
(cswords (lambda (shift 1s)
(length (list-ref 1s (car shift))))))

(let ((lasti (min (cswords shiftl 1s)
(cswords shift2 1s)))
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(result nil)
(done? nil))
(do ((i 0 (1+ 1)))
(done? result)
(let ((maxed? (= i lasti))
(cwordl (symbol->string (csword shiftl i 1s)))
(cword2 (symbol->string (csword shift2 i 1s))))
(if (or maxed? (not (string=? cwordl cword2)))
(begin
(set! done? t)
(set! result
(if maxed?
(<= lasti (cswords shift2 1ls))
(string<=? cwordl cword2)))))))))))

;3 Swap the values at two indices in the vector
(swap-indices (lambda (vec i j)
(let ((temp (vector-ref vec 1i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j temp))))

;3 Look at each cs-line from start to end and put its index in the upper or
;3 lower half of *alph-index*. An equal comparison defaults to the left
;3 side.
(gqsplit (lambda (start end split)
(let ((low (1+ start)) ; start one below bot, and use bot as <= split
(high end))

;; swap the split and start so split doesn’t get mixed in swaps.
(swap-indices *alph-index* start split)
(set! split start)

;; do split
(do )
((> low high) nil)
(if (csline<= (vector-ref *alph-index* low)
(vector-ref *alph-index* split)
*line-storage*)
(set! low (1+ low))
(begin
(swap-indices *alph-index* low high)
(set! high (1- high)))))

;3 On exit of loop, we are guaranteed that (1- low) is in the low end.
;; In the worst case, it is start (i.e., split). So we swap this
;; With the split, and then gqalph will sort everything above and
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;3 below (1- low).
(swap-indices *alph-index* split (1- low))

(1- low))))

;; Quicksort the shifted lines from start to end.
(qalph (lambda (start end)
(if (< start end)
(let* ((split start)
(middle (gsplit start end split)))

(begin

(qalph start (1- middle))

(qalph (1+ middle) end)))))))

:: THE REAL CODE
(let ((numitems (length *circ-index*)))
(set! *alph-index* (make-vector numitems))
(do ((i 0 (1+ 1))
((= i numitems) nil)
(vector-set! *alph-index* i (vector-ref *circ-index* 1i)))
(qalph 0 (1- numitems))))))

239332 333 93333333333 23323333 I IINIININIININNINI NN NN INIIINIININNIINIINDINDINDINDINDIND
i
;;; OUTPUT MODULE

13

(define allalphcslines (lambda ()
(letrec
;; builds a circularly shifted line storage and a shiftspec
((csline (lambda (shift 1s)
(let* ((1no (car shift))
(fwno (cadr shift))
(wrdent (length (list-ref 1s 1mno)))
(revcs nil))
(do ((i 0 (1+ 1))
((= i wrdent))
(set! revcs
(cons (list-ref (list-ref 1ls 1lno) (modulo (+ i fwno) wrdcnt))
revcs)))
(reverse revcs)))))

(let ((numcslines (length *alph-index*)))
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(do ((i 0 (1+ 1i)))
((= i numcslines) nil)
(printf "“s~%" (csline (vector-ref *alph-index* i) *line-storage*)))))))

23 23923 23933 23333333 23323 IIIIIIIIIINIIIIIIIIINININIINIININDINININDINININDINIDINDNDINDINDNDIN
H
;;; MASTER CONTROL

11

(putfile (list ’(a b ¢ d) ’(one) °’(hey this is different) ’(a b ¢ d)))
(cssetup)

(alph)

(allalphcslines)

A.4 Restructured Data Decomposition of KWIC

333333333333 33333333 3333333333 33333333333333333333333333333333I33I3I3I3IIIIIII
533
;33 LINE-STORAGE MODULE

(define *line-storage* nil)

(define line (lambda (lineno)
(1ist-ref *line-storage* lineno)))

(define lines (lambda ()
(length *line-storage*)))

(define words (lambda (lineno)
(length (line linemno))))

(define allwords
(lambda ()
(do ((restls *line-storage* (cdr restls))
(sum O sum))
((null? restls)
sum)
(set! sum (+ sum (length (car restls)))))))

(define insline
(lambda (line)
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(if line (set! *line-storage* (cons line *line-storage#*)) nil)))

23 23923 23333 2333333323323 IIIIIIIIIINIINIINNINNIIIIIINIINIINIIINDNIINDNINDINDNINDINIINDINDINDIND
H
;;; INPUT MODULE

11

(define putfile
(lambda (linelist)
(do ((restlist linelist (cdr restlist)))
((null? restlist)
nil)
(insline (car restlist)))))

33 23923 23933 2333333323323 I IIIIINIIIIINIINIIINIININIINIINININININIINDNIINDIINDIDININDINIINDINIDIND
-
;;; CIRCULAR SHIFTER

333
(define *circ-index* nil)

(define cslines (lambda ()
(length *circ-index*)))

(define csline (lambda (i)
(vector-ref *circ-index* i)))

(define printable-csline
(lambda (shift)
(let* ((1lno (car shift))
(fwno (cadr shift))
(wrdent (words 1no))
(revcs nil))
(do ((i 0 (1+ 1)))
((= i wrdcnt)
nil)
(set! revcs
(cons (list-ref (line 1no) (modulo (+ i fwno) wrdcnt)) revcs)))
(reverse revcs))))

(define cswords (lambda (shift)
(words (car shift))))
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(define csword
(lambda (shift wordno)
(let* ((1lno (car shift))
(fwno (cadr shift)))
(1ist-ref (line lno) (modulo (+ fwno wordno) (length (line 1no)))))))

(define csline<=
(lambda (shiftl shift2)
(let ((lasti (min (cswords shiftl) (cswords shift2)))
(result nil)
(done? nil))
(do ((i 0 (1+ i)))
(done?
result)
(let ((maxed? (= i lasti))
(cwordl (symbol->string (csword shiftl i)))
(cword2 (symbol->string (csword shift2 i))))
(if (or maxed? (not (string=7? cwordl cword2)))
(begin (set! done? t)
(set! result
(if maxed? (<= lasti (cswords shift2))
(string<=? cwordl cword2))))
nil))))))

(define cssetup
(lambda ()
(let ((numcslines (allwords))
(cslineno 0)
(numlines (lines))
(numwords nil))
(set! *circ-index* (make-vector numcslines))
(do ((lineno 0 (1+ lineno)))
((= lineno numlines)
nil)
(set! numwords (words lineno))
(do ((wordno 0 (1+ wordno)))
((= wordno numwords)
nil)
(vector-set! *circ-index* cslineno (list lineno wordno))
(set! cslineno (1+ cslineno)))))))

3323333333333 333333 3333333333333333333333333333333333333333333333333333333)
335
;53 ALPHABETIZING MODULE

13
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(define *alph-index* nil)

(define alph
(lambda ()
(letrec
((swap-indices
(lambda (vec i j)

(let ((temp (vector-ref vec i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j temp))))

(gsplit
(lambda (start end split)
(let ((low (1+ start))
(high end))
(swap-indices *alph-index* start split)
(set! split start)
(do )
((> low high) nil)
(if
(csline<= (vector-ref *alph-index* low)
(vector-ref *alph-index* split))
(set! low (1+ low))
(begin
(swap-indices *alph-index* low high)
(set! high (1- high)))))
(swap-indices *alph-index* split (1- low))
(1- 1ow))))
(qalph
(lambda (start end)
(if (< start end)
(let* ((split start)
(middle (gsplit start end split)))
(begin (qalph start (1- middle)) (qalph (1+ middle) end)))
nil))))
(let ((numitems (cslines)))
(set! *alph-index* (make-vector numitems))
(do ((i 0 (1+ 1)))
((= i numitems)
nil)
(vector-set! *alph-index* i (csline i)))
(qalph 0 (1- numitems))))))

(define alphcsline (lambda (i)
(vector-ref *alph-index* 1i)))
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23 23923 23933 23333333 23323 IIIIIIIIIINIIIIIIIIINININIINIININDINININDINININDINIDINDNDINDINDNDIN
H
;;; OUTPUT MODULE

11

(define allalphcslines
(lambda ()
(let ((numcslines (cswords)))
(do ((i 0 (1+ 1))
((= i numcslines)
nil)
(printf "~s~%" (printable-csline (alphcsline i)))))))
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