Cryptanalysis of Modern Symmetric-Key Block Ciphers

[Based on "A Tutorial on Linear and Differential Cryptanalysis" by Howard Heys.]

Modern block ciphers (like DES and AES):

- proceed in rounds
- each round has its own round key or subkey
- the subkeys are computed from the master key by the key schedule

A simpler modern-type block cipher for now: the substitution-permutation network (similar to DES and AES but simplified structure)

Substitution-Permutation Networks (SPN)

- consists of a number of rounds, each round (except the last), consists of XOR-ing the <u>subkey</u> (this is sometimes called key mixing), substitutions, and a permutation
- typically subkeys are derived from the master key but here they are randomly generated and unrelated

Let ℓ and m be positive integers. The block length of the cipher is ℓm .

We will use one substitution (also called an 5-box)

$$\pi_{S}:\{0,1\}^{\ell} \to \{0,1\}^{\ell}$$

$$\pi_{S}: (0,0) \to (1,0)$$

$$(0,1) \to (0,0)$$

$$(1,0) \to (1,1)$$

$$(1,1) \to (0,1)$$

1 = 2

and one permutation

$$\pi_{P}$$
:{1,..., {m}} \rightarrow {1,..., {m}}.

Substitution-Permutation Networks (SPN)

In each round:

- XOR with the round key,
- split the current string into m strings of length ℓ , apply $\pi_{\rm S}$ to each of these m strings
- if this is not the last round, perform permutation π_P ; if it is the last round, XOR with the round key K_{R+1} where R is the number of rounds

For example, if $\ell=2$, m=3, π_{S} and π_{P} (see below),

suppose the string before the round is 100011 and the round key is 100100 - what is the resulting string after this round?

	11113 1 (Juna :	123486
input:		after Tp:	11 100
subley:	100100	1	
after XoR:	000111		
after Tig.		/	

	0 0	01	10	u
X	0	1	2	3
$\pi_{S}(\mathbf{x})$	1	3	0	2

X	1	2	3	4	5	6
$\pi_{P}(x)$	6	4	2	1	3	5

More on SPNs

- simple and very efficient, both in hardware and in software (assuming the S-boxes are not too large)
- decryption analogous to encryption (reverse each operation)
- very successful: DES and AES are variations on SPNs
- the first and last operations are XORing with subkeys (called whitening) makes attacks harder

Figure 1 (Heys' tutorial): an example SPN that we will cryptanalyze

Attacks on SPNs

- linear cryptanalysis and differential cryptanalysis
- both: known-plaintext, and they require a lot of plaintextciphertext pairs

Linear cryptanalysis:

Find a linear relationship between a subset of the plaintext bits and a subset of the ciphertext bits; this relationship should hold with probability bounded away from $\frac{1}{2}$ (the further away from $\frac{1}{2}$, the better). This probability, minus $\frac{1}{2}$, is called the probability bias.

Note:

In SPNs, all computations are linear, except for the S-boxes. Also, recall that linear cryptosystems are vulnerable to known-plaintext attacks.

The S-box from Figure 1:

0000	0001							1000					1111			
0	1	2	S	4	5	6	7	8	9	A	В	C	О	ш	Т	
Е	4	D	1	2	ш_	В	8	3	A	6	C	5	9	0	7	

DOLL

Understanding the table: $\ell=4$, the possible 4-bit strings are given in HEX.

Let X_1 , X_2 , X_3 , X_4 be random variables for the input bits (independent, uniform), and let Y_1 , Y_2 , Y_3 , Y_4 be random variables for the output bits.

The S-box from Figure 1:

.0	equation (x) solds for the part
12:X3:0	- equal for x
W K	holds impun
1001	this,

0															
Е	4	Q	1	2	F	В	8	3	A	6	С	5	9	0	7

Consider the linear equation:

$$X_2 \oplus X_3 \oplus Y_1 \oplus Y_3 \oplus Y_4 = 0$$
, or, equivalently $X_2 \oplus X_3 = Y_1 \oplus Y_3 \oplus Y_4$.

This equation holds for 12 or the 16 possible input values X_1 , X_2 , X_3 , X_4 . What is the probability bias of this equation?

the equation holds w. prob.
$$\frac{12}{16}$$
 \rightarrow the bias is $\frac{12}{16} - \frac{1}{2} = \frac{1}{4}$

The S-box from Figure 1:

0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
Е	4	D	1	2	LL	В	8	3	A	6	C	5	9	0	7

Consider the linear equation:

$$X_1 \oplus X_4 = Y_2$$

What is the probability bias of this equation? 0

(do yourself)

The S-box from Figure 1:

0	1	2	3	4	5	6	7	8	9	A	В	C	D	Ш	Т
Е	4	D	1	2	1	В	8	3	A	6	C	5	9	0	7

Consider the linear equation:

$$X_3 \oplus X_4 = Y_1 \oplus Y_4$$

What is the probability bias of this equation?

Coming back from the next slide:

$$a_1 = a_2 = 0$$
 $b_1 = b_4 = 0$
 $a_2 = a_4 = 0$
 $b_2 = b_3 = 0$

The S-box from Figure 1:

0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
E	4	D	1	2	Τ	В	8	3	A	6	С	5	9	О	7

We can compute the probability biases for all linear equations relating the X_i 's and the Y_i 's. I.e. for any $a_i,b_i \in \{0,1\}$, we can compute the bias of the equation

$$\alpha_1X_1\oplus\alpha_2X_2\oplus\alpha_3X_3\oplus\alpha_4X_4=b_1Y_1\oplus b_2Y_2\oplus b_3Y_3\oplus b_4Y_4.$$

28 such equations

See Tables 3 and 4 in Heys's tutorial.

Next task: combining the linear approximations of the S-boxes to get a linear approximation of the entire SPN.

Piling-up Lemma

We will combine S-box approximations... What happens to the biases?

Piling-up Lemma:

For k independent random variables $X_1, X_2, ..., X_k$ where $X_i = 0$ has bias ϵ_i , the equation $X_1 \oplus ... \oplus X_k = 0$ has bias $2^{k-1} \prod_{i=1,...,k} \epsilon_i$.

 $Pr(X_i = 1) = Pi$ $E_i = Pi - \frac{1}{2}$

 $Pr(X_2=1) = P_2$ $\epsilon_1 = P_2 - \frac{1}{2}$

Note: lemma by Matsui, inventor of linear cryptanalysis

Proving the lemma for k=2:

want:
$$\Pr(X_1 \oplus X_2 = 0) = \Pr(X_1 = 0 \text{ and } X_2 = 0) + \Pr(X_1 = 1 \text{ and } X_2 = 1) = \begin{pmatrix} x_1, x_2 \\ x_2 + x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_4 \\ x_4 + x_4 \end{pmatrix} +$$

Piling-up Lemma

We will combine S-box approximations... What happens to the biases?

Piling-up Lemma:

For k independent random variables $X_1, X_2, ..., X_k$ where $X_i = 0$ has bias ϵ_i , the equation $X_1 \oplus ... \oplus X_k = 0$ has bias $2^{k-1} \prod_{i=1,...,k} \epsilon_i$.

Note: lemma by Matsui, inventor of linear cryptanalysis

Give a simple example that shows that the assumption that the X_i 's are independent is necessary.

$$X_1 = X_2$$
 $X_1 \oplus Y_2 = 0$ always true: $Pr(X_1 \oplus X_2 = 0) = 1$
bias: $\frac{1}{2}$
not $2 \cdot 0 \cdot 0$

Recall the SPN from Figure 1 (also see Figure 3; we do not do the last round on this slide).

Our approximation will involve S-boxes S_{12} , S_{22} , S_{32} , and S_{34} . We call them the active S-boxes.

We will use the following approximations of these S-boxes:

$$S_{12}$$
: $X_1 \oplus X_3 \oplus X_4 = Y_2$ bias $\frac{1}{4}$
 S_{22} : $X_2 = Y_2 \oplus Y_4$ bias $-\frac{1}{4}$
 S_{32} : $X_2 = Y_2 \oplus Y_4$ bias $-\frac{1}{4}$
 S_{34} : $X_2 = Y_2 \oplus Y_4$ bias $-\frac{1}{4}$

Let P_i be the random variable for the i-th plaintext bit, let $U_{r,i}$ be the random variable for the i-th input bit to the round r S-boxes, let $V_{r,i}$ be the random variable for the i-th output bit of the round r S-boxes, and let $K_{r,i}$ be the i-th bit of the r-th subkey.

Let T_1, T_2, T_3, T_4 be random variables such that

$$T_{1} = U_{1,5} \oplus U_{1,7} \oplus U_{1,8} \oplus V_{1,6}$$

$$T_{2} = U_{2,6} \oplus V_{2,6} \oplus V_{2,8}$$

$$T_{3} = U_{3,6} \oplus V_{3,6} \oplus V_{3,8}$$

$$T_{4} = U_{3,14} \oplus V_{3,14} \oplus V_{3,16}$$

$$-1/4 \text{ bias}$$

$$-1/4 \text{ bias}$$

What are the biases of $T_i=0$ for $i\in\{1,2,3,4\}$?

Let P_i be the random variable for the i-th plaintext bit, let $U_{r,i}$ be the random variable for the i-th input bit to the round r S-boxes, let $V_{r,i}$ be the random variable for the i-th output bit of the round r S-boxes, and let $K_{r,i}$ be the i-th bit of the r-th subkey.

Let T_1, T_2, T_3, T_4 be random variables such that

$$T_{1} = U_{1,5} \oplus U_{1,7} \oplus U_{1,8} \oplus V_{1,6}$$

$$T_{2} = U_{2,6} \oplus V_{2,6} \oplus V_{2,8}$$

$$T_{3} = U_{3,6} \oplus V_{3,6} \oplus V_{3,8}$$

$$T_{4} = U_{3,14} \oplus V_{3,14} \oplus V_{3,16}$$

Note: the T_i 's are not independent but pretending that they are works well in practice.

Let P_i be the random variable for the i-th plaintext bit, let $U_{r,i}$ be the random variable for the i-th input bit to the round r S-boxes, let $V_{r,i}$ be the random variable for the i-th output bit of the round r S-boxes, and let $K_{r,i}$ be the i-th bit of the r-th subkey.

Let T_1, T_2, T_3, T_4 be random variables such that

$$T_1 = U_{1,5} \oplus U_{1,7} \oplus U_{1,8} \oplus V_{1,6}$$
 $T_2 = U_{2,6} \oplus V_{2,6} \oplus V_{2,8}$
 $T_3 = U_{3,6} \oplus V_{3,6} \oplus V_{3,8}$
 $T_4 = U_{3,14} \oplus V_{3,14} \oplus V_{3,16}$

Applying the Piling-up Lemma: what is the bias of $T_1 \oplus T_2 \oplus T_3 \oplus T_4 = 0$?

$$2^{\frac{1}{4}-1} \cdot \frac{1}{\frac{1}{4}} \cdot \left(-\frac{1}{4}\right)^3 = -\frac{1}{32} = -0.03125$$

Expressing $T_1 \oplus T_2 \oplus T_3 \oplus T_4$ as the XOR of plaintext bits, subkey bits, and bits of the input (straightforward but tedious):

$$T_{1} \oplus T_{2} \oplus T_{3} \oplus T_{4} = \underset{P_{5} \oplus P_{7} \oplus P_{8} \oplus U_{4,6} \oplus U_{4,8} \oplus U_{4,14} \oplus U_{4,16} \oplus K_{1,5} \oplus K_{1,7} \oplus K_{1,8} \oplus K_{2,6} \oplus K_{3,6} \oplus K_{3,14} \oplus K_{4,6} \oplus K_{4,8} \oplus K_{4,14} \oplus K_{4,16}$$

$$K_{3,6} \oplus K_{3,14} \oplus K_{4,6} \oplus K_{4,8} \oplus K_{4,14} \oplus K_{4,16}$$

$$K_{4,14} \oplus K_{4,16} \oplus K_{4,$$

For fixed key bits, their XOR-sum is either 0 or 1. Then the bias of

is either -1/32 or 1/32.

Recall: we are performing a known-plaintext attack, and we assume that we have a large pool of plaintext-ciphertext pairs (all encrypted with the same key).

How to use our linear approximation to determine a part of subkey K_5 ?

We will partially decrypt each ciphertext, and see if our linear approximation

$$P_{5} \oplus P_{7} \oplus P_{8} \oplus U_{4,6} \oplus U_{4,8} \oplus U_{4,14} \oplus U_{4,16} = 0$$

holds or not.

In particular, we will go through all possible 2^8 possibilities for the subkey bits $K_{5,5}$, $K_{5,6}$, $K_{5,7}$, $K_{5,7}$, $K_{5,13}$, $K_{5,14}$, $K_{5,15}$, $K_{5,16}$.

For each candidate subkey, compute the bias of

$$P_5 \oplus P_7 \oplus P_8 \oplus U_{4,6} \oplus U_{4,8} \oplus U_{4,14} \oplus U_{4,16} = 0$$

(described on the next slide).

We are looking for a subkey for which the bias is the closest to 1/32 or -1/32.

How to compute the bias for a specific candidate subkey? For each plaintext-ciphertext pair, partially decrypt the ciphertext (in our case, XOR with the candidate subkey, then invert the two S-boxes to get $U_{4,5}$, $U_{4,6}$, $U_{4,7}$, $U_{4,8}$, $U_{4,13}$, $U_{4,14}$, $U_{4,15}$, $U_{4,16}$), then compute the value of

$$P_{5} \oplus P_{7} \oplus P_{8} \oplus U_{4,6} \oplus U_{4,8} \oplus U_{4,14} \oplus U_{4,16}. = 0$$
 (*)

Determine the fraction of plaintext-ciphertext pairs for which this value is 0, subtract $\frac{1}{2}$ to get the bias (see Table 5).

```
for all 28 subkey possib. for K<sub>5,5</sub>... K<sub>5,8</sub>, K<sub>5,18</sub>... K<sub>5,16</sub>

count=0

for all plaintext/ciphertext pairs (suppose there are b such pairs)

XOR the key with the ciphertext to get V<sub>4,5</sub>... V<sub>4,8</sub>, V<sub>4,18</sub>... V<sub>4,16</sub>

run the 5-boxes backward to get U<sub>4,5</sub>... U<sub>4,8</sub>, U<sub>4,13</sub>... U<sub>4,16</sub>

check if the equation (x) holds -> if yes, count+t

bias = woul/b - 1/2 - chose the subtex for which bias is the absent to 12
```

How many plaintext-ciphertext pairs do we need? If the bias is ϵ (for us $|\epsilon|=1/32$), we need about $c\epsilon^{-2}$ pairs for some "small" constant c. For our example c=8 is sufficient.

How many pairs do we need for our example?

$$C \cdot \frac{1}{5^2} = C \cdot (32)^2 = 8 \cdot 32^2$$

Questions:

- What are some disadvantages of linear cryptanalysis?
- How can you make your SPN more secure against linear cryptanalysis?