
Testing

Steve Loughran
HP Laboratories
Thursday November 6th, 2006



your code doesn't work



i know this because...



my code doesn't work



it's OK to write code 
that doesn’t work



just don’t ship it



especially if it matters



how do you get from 
"broken" to "shipping"?



Device Drivers

ship and see

test it!

Test-Driven

∃x:
(∀y∈[1..x]:
f(y)>0)

Formal Methods

prove it works



proofs of correctness

+ shows an algorithm really works
+ good for concurrency
+ and distributed things

- makes assumptions about system
- needs lots of maths/CS skills
(Pi-Calculus, The HOL System)

- regression proofs? 



Test Driven Development

any feature without a test 
doesn’t exist



JUnit

* unit test framework in Java 
-versions for C++, Python, Ruby...

* simple to learn
* good tool support
* somewhat low-level
* extensions for system testing





public class LessSimpleTest extends TestCase {

public LessSimpleTest(String s) {
super(s);

}

public void testAssignment() {
final Date date = new Date();
Event event = new Event(UUID.randomUUID(), 

date, "now", "Text");
assertEquals("self equality failed", 

event, event);
assertEquals(date, event.getDate());
assertNotNull(date.getID());

}
} 



swing GUI 
TestRunner



Ant-generated report

scales better; reports published



Continuous Integration



System Testing

* deploy, then:
HttpUnit, XmlUnit, Cactus

* needs automated deployment, database 
setup, teardown

* performance testing by comparing 
timings w.r.t. old runs

* Simulate entire behaviour of the client 
user/application



Distributed System Testing

* Still a research topic

* Set up complex configurations
* Run tests on remote machines
* collect results and log data
* Post-mortem analysis
* Virtualization can help

see http://tinyurl.com/y99tez



limitations of testing

- good tests are hard to write
- distributed tests very hard
- different system configurations are 
still a problem

- status of "tester" below "coder"

A good test breaks the application-–-––––-–--–-----------------------------------------



politics:
resistance to change



developers: ignorance, fear

E.E.E. Educate, Evangelise, Encourage

* gently show benefits
* use testing to track down a bug
* retain test for regression testing
* add tests for new code and old 
problems, not existing codebase

* adopt cruise control, reporting



management: ignorance

"too much time spent on testing"

* out of date with modern processes
* belief that testing slows the schedule 
(only if you follow the ship-and-see 
process)

E.E.E., then D.D.D: 
Distract, Dissemble, Defeat



Test Driven Standards?

any standard without a test 
doesn’t exist


