
1

Eiffel: a language for
software engineering

Bertrand Meyer

LASER 2012

Chair of
Software Engineering

2

The software of the future

Product quality
 Correctness
 Robustness
 Security
 Efficiency

Process quality
 Fast development
 No semantic gap (“impedance mismatch”) between

developers and other stakeholders
 Self-validating, self-testing
 Ease of change
 Reusability

2

3

Where is Eiffel used?

Finance

Aerospace

Networking systems

Health care

Enterprise systems

Education (including introductory programming)

Often: lots of other solutions tried before!

4

Eiffel: Method, Language, Environment

Method :
 Applicable throughout the lifecycle
 Object-oriented
 Seamless development
 Based on Design by Contract™ principles

Language :
 Full power of object technology
 Simple yet powerful, numerous original features
 ISO standard (2006)
 Supports full concurrency

Environment (EiffelStudio):
 Integrated, provides single solution, including

analysis and modeling
 Lots of platforms (Unix, Windows, VMS, .NET…)
 Open and interoperable

3

5

The Eiffel method: some principles

 Abstract data types
 Information hiding
 Seamlessness, Reversibility
 Design for reuse
 Design by Contract
 Concurrency as natural extension of sequential programming
 Open-Closed principle
 Single Choice principle
 Single Model/Single Product principle
 Uniform Access principle
 Command-Query Separation principle
 Option-Operand Separation principle
 Style matters ... See next...

6

EiffelStudio

Serialization

EiffelStore

EiffelStudio

Ansi C

Executable
system

IL

EiffelBase

WEL

EiffelVision

EiffelNet

EiffelWeb

EiffelMath

EiffelCOM

Persistent
objects

Eiffel
Runtime

Databases
(Rel, OO)

C compilation

Jitter
Eiffel compilation

User
classes

General library

Win32 library

Networking

Web development

Advanced numerics

External
C/C++/Java

.NET
Assemblies

EiffelBuild

GUI builder

Multiplatform GUI library

 Browsing, fast compiling
(Melting Ice™), debugging,
diagrams, metrics...

4

7

Eiffel is not…

Model-driven development

Functional programming

DSLs

Use-case-driven design

8

Designing from use cases

5

9

The competition

Rational Rose

SAP

SPARK

10

Language versions

Eiffel 1, 1986
Classes, contracts, genericity, single and multiple
inheritance, garbage collection, …

Eiffel 2, 1988 (Object-Oriented Software Construction)
Exceptions, constrained genericity

Eiffel 3, 1990-1992 (Eiffel: The Language)
Basic types as classes, infix & prefix operators…

Eiffel 4, 1997
“Precursor” and agents

Eiffel 5, ECMA Standard, 2005, revised 2006, and ISO
standard, November 2006
www.ecma-international.org/publications/standards/Ecma-367.htm

Attached types, conversion, assigner commands…

6

11

The Eiffel language

 Classes
 Statically typed
 Uniform type system, covering basic types
 Agents: objects encapsulating behavior
 Built-in Design by Contract mechanisms, incl. exceptions
 Simple and safe concurrency: SCOOP
 Genericity
 Inheritance, single and multiple
 Void safety
 Conversion
 Covariance
 “Once” mechanisms, replacing statics and globals

121

Learning Eiffel

 Simple syntax, no cryptic symbols
Eiffel programmers know all of Eiffel

Wide variety of user backgrounds
“If you can write a conditional,
you can write a contract ”

 Fast learning curve
 Lots of good models to learn from
 Strong style rules

 May need to “unlearn” needless tricks
 Borrows less from C than you’d think

7

13

Teaching

First Java program:

You’ll understand
when you grow up!

Do as I say,
not as I do

class First {

public static void main(String args[])

{ System.out.println("Hello World!"); } }

14

What is not in Eiffel

 Goto
 Functions as arguments (but: agents)
 Pointer arithmetic
 Special increment syntax, e.g. x++, ++x
 In-class feature overloading
 Direct access to object fields: x  a := v
 Mechanisms that directly conflict with O-O principles,

e.g. static functions

8

15

Dogmatism and flexibility

Dogmatic where it counts:

 Information hiding (e.g. no x.a := v)
 Overloading
 “One good way to do anything”
 Style rules

Flexible when it makes no point to harass programmers:
 Give standard notations an O-O interpretation

Examples:
• a + b
• x  a := v

 Syntax, e.g. semicolon

16

Syntax conventions

Semicolon used as a separator (not terminator)
It’s optional almost all the time. Just forget about it!

Style rules are an important part of Eiffel:
 Every feature should have a header comment
 Every class should have an indexing clause
 Layout, indentation
 Choice of names for classes and features

9

17

More language design principles

Keywords are full English-language words, e.g. require
(there is one exception: elseif)

Generally simplest version of work (require, not requires)

Strong style rules, e.g. indentation, choice of names, letter
case (language itself is case-insensitive), comments…

Not minimalistic but “One good way to do anything”

Language evolution: it’s OK to remove features

18

Style of Eiffel language description

Specification on three levels:

 Syntax
 Validity
 Semantics

10

19

Syntax: structure of texts

Syntactically illegal examples:

x.a = b

20

Syntax description

BNF-like
Three kinds of production: aggregate, choice, list
Each non-terminal construct defined by exactly one
production
No mixing!

11

21

Syntax specification

22

Validity: constraints on syntactically legal texts

Invalid example:

your_integer + your_boolean

12

23

Semantics: effect of valid texts, if defined

Incorrect example:

x := Void

x.your_feature

24

Validity rules: if and only if

13

25

Openness

Eiffel can be used as “component combinator” to package
elements from different sources:

 Mechanisms for integrating elements in C, C++, Java,
CIL (.NET)

 Interfaces and libraries: SQL, XML, UML (XMI),
CORBA, COM, others

 Particularly extensive C/C++ interfacing
 Outside of .NET, compiles down to ANSI C code,

facilitates support for C and C++ easier.
 On .NET, seamless integration with C#, VB .NET etc.

26

The Eiffel language: there is a hidden agenda

That you forget it even exists

14

27

- -

The Eiffel method

28

The Eiffel method: some principles

 Abstract data types
 Information hiding
 Seamlessness, Reversibility
 Design for reuse
 Design by Contract
 Concurrency as natural extension of sequential programming
 Open-Closed principle
 Single Choice principle
 Single Model/Single Product principle
 Uniform Access principle
 Command-Query Separation principle
 Option-Operand Separation principle
 Style matters ... See next...

15

29

Traditional lifecycle model

Rigid model:
 Waterfall: separate tasks,

impedance mismatches
 Variants, e.g. spiral, retain

some of the problems
Separate tools:
 Programming environment
 Analysis & design tools, e.g. UML

Consequences:
 Hard to keep model, implementation,

documentation consistent
 Constantly reconciling views
 Inflexible, hard to maintain systems
 Hard to accommodate bouts of late wisdom
 Wastes efforts
 Damages quality

Feasibility
study

Requirements

Global design

Detailed design

Deployment

V & V

Specification

Implementation

30

The Eiffel model

Seamless development:
Single notation, tools,
concepts, principles throughout
Eiffel is as much for analysis &
design as implementation &
maintenance
Continuous, incremental
development
Keep model, implementation
and documentation consistent
Reversibility: go back & forth
Saves money: invest in single
set of tools
Boosts quality

Example classes:

PLANE, ACCOUNT,
TRANSACTION…

STATE, COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

16

31

Seamlessness

Seamlessness Principle

Software development should rely
on a single set of notations & tools

32

Reversibility

Reversibility Principle

The software development process,
notations and tools

should allow making changes
at any step in the process

17

33

The seamless, reversible model

Example classes:

PLANE, ACCOUNT,
TRANSACTION…

STATE, COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

34

Class invariant

Postcondition

Precondition

Specified, not
implemented

Analysis classes
deferred class VAT inherit

TANK
feature

in_valve, out_valve : VALVE

fill
-- Fill the vat.

require
in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end
empty, is_full, is_empty, gauge, maximum,

invariant
is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

18

35

Single model

Use a single base for everything: analysis, design,
implementation, documentation...

Use tools to extract the appropriate views.

Single Model Principle

All the information
about a software system

should be in the software text

36

The seamless, reversible model

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

19

37

Generalization

Prepare for reuse:
Remove built-in limits
Remove dependencies on

specifics of project
Improve documentation,

contracts...
Abstract
Extract commonalities,

revamp inheritance
hierarchy

37

A D I V G

A *

B

Y *

X Z

T

U

38

The cluster model

A

D

I

V

G

Permits dynamic
reconfiguration

A

D

I

V

G

A

D

I

V

G

A

D

I

V

G

A

D

I

V

G

A

D

I

V

G

Mix of sequential and
concurrent engineering

20

39

Tool support for seamless development

 Diagram Tool
• System diagrams can be produced automatically
from software text

• Works both ways: update diagrams or update text
– other view immediately updated

 No need for separate UML tool
 Metrics Tool
 Profiler Tool
 Documentation generation tool
 ...

40

EiffelStudio diagram tool

21

41

Text-graphics equivalence

42

Equivalence

Equivalence Principle

Textual, graphical and other views
should all represent the same model

22

43

Command-Query separation principle

Asking a question
should not change the answer

44

A command

23

45

A query

46

Command-Query separation principle

Asking a question
should not change the answer

24

47

Command-Query separation

A command (procedure) does something but does not
return a result.

A query (function or attribute) returns a result but does
not change the state.

48

Command-Query Separation

Asking a question
should not change the answer!

25

49

Referential transparency

If two expressions have equal value, one may be
substituted for the other in any context where that other
is valid.

If a = b, then f (a) = f (b) for any f.
Prohibits functions with side effects.
Also:

 For any integer i, normally i + i = 2 x i

 But even if getint () = 2, getint () + getint () is
usually not equal to 4.

50

Command-query separation

Input mechanism using EiffelBase
(instead of n := getint ()):

io.read_integer

n := io.last_integer

26

51

The class

From the module viewpoint:
 Set of available services (“features”)
 Information hiding
 Classes may be clients of each other
 A class may extend another, through inheritance

From the type viewpoint:
 Describes a set of run-time objects (instances of the

class)
 Used to declare variables (more generally, entities)

x : C
 Static type checking
 A class may specialize another, through inheritance

52

Language style

Compatibility principle

Traditional notations should be supported
with an O-O semantics

27

53

Infix and prefix operators

In

a − b
the − operator is “infix”

(written between operands)

In

− b
the − operator is “prefix”

(written before the operand)

54

The object-oriented form of call

some_target.some_feature (some_arguments)

For example:

my_figure.display

my_figure.move (3, 5)

x := a.plus (b) ???????

28

55

Operator features

expanded class INTEGER feature

plus alias "+" (other : INTEGER): INTEGER
-- Sum with other

do ... end

times alias "" (other : INTEGER): INTEGER
-- Product by other

do ... end

minus alias "-" : INTEGER
-- Unary minus

do ... end
...
end

Calls such as i.plus (j) can now be written i + j

56

Assignment commands

It is possible to define a query as

temperature: REAL assign set_temperature

Then the syntax
x.temperature := 21.5

is accepted as an abbreviation for

x.set_temperature (21.5)

Retains contracts and any other supplementary operations

Not an assignment, but a
procedure call

29

57

Using the bracket alias

In class ARRAY [G] :

item (i : INTEGER): G
require

i >= lower and i <= count
do … end

put (x : G ; i : INTEGER): G
require

i >= lower and i <= count
do … end

alias "[]" assign put

a.put (a.item (i) + 1, i)
a.item (i) := a.item (i) + 1

a [i] := a [i] + 1
Not an assignment!

58

Bracket alias

population [“Procchio“] := 366

table [a, b, c] := d

30

59

Array access

Object-oriented forms:
a : ARRAY [T]
a.put (x, 23)
x := a.item (23)

Usual form:
a [i] := a [i] + 1

Object-oriented form:
a.put (a.item (i) + 1, i)

Above mechanisms make the following synonyms possible:
a [23] := x

x := a [23]

60

Design by Contract

31

61

Design by Contract

Contract Principle

Every software element
should be characterized
by a precise specification

62

Andrew Binstock, Dr. Dobb’s, 26 Aug 2012

http://bit.ly/O48OOb (slightly abridged)

I've found myself constantly frustrated by the feeling that no
matter how much I test my code, I can't be sure that it's
right. The best I can say is that it is probably right. But when I
write code for others, I want it to be completely reliable. This
concern has led me to embrace tools that enforce correctness.
Long ago, I adopted Bertrand Meyer's concept of design-by-
contract (DBC), which suggests that every function test for
preconditions, postconditions, and invariants. In Java, I do this
with Guava. My methods tend to have tests, especially at the
beginning to check each parameter carefully. I test invariants
and post-conditions primarily in unit tests, which is probably not
ideal, but moves some of the validation clutter out of the code.

32

63

Design by Contract: applications

 Getting the software right
 Analysis
 Design
 Implementation
 Debugging
 Testing
 Management
 Maintenance
 Documentation

64

Design by Contract: the basic idea

Every software element is intended to satisfy a certain
goal, for the benefit of other software elements (and
ultimately of human users)

This goal is the element’s contract

The contract of any software element should be
 Explicit
 Part of the software element itself

33

65

A counter-example: Ariane 5, 1996

(See: Jean-Marc Jézéquel and Bertrand Meyer: Design by
Contract: The Lessons of Ariane, IEEE Computer, January
1997, also at http://www.eiffel.com)

37 seconds into flight, exception in Ada program not
processed; order given to abort the mission. Ultimate cost
in billions of euros

Cause: incorrect conversion of 64-bit real value
(“horizontal bias” of the flight) into 16-bit integer

Systematic analysis had “proved” that the exception could
not occur!

66

Ariane-5 (continued)

It was a REUSE error:

The analysis was correct – for Ariane 4 !

The assumption was documented – in a design document !

With assertions, the error would almost certainly detected by either
static inspection or testing:

integer_bias (b : REAL): INTEGER
require

representable (b)
do

…
ensure

equivalent (b, Result)
end

34

67

The contract view of software construction

Constructing systems as structured collections of
cooperating software elements — suppliers and clients —
cooperating on the basis of clear definitions of obligations
and benefits

These definitions are the contracts

68

Contracts for analysis

Client

Supplier

(Satisfy precondition:)
Make sure input valve is
open, output valve closed

(Satisfy postcondition:)
Fill the tank and close
both valves

OBLIGATIONS

(From postcondition:)
Get filled-up tank, with
both valves closed

(From precondition:)
Simpler processing
thanks to assumption
that valves are in the
proper initial position

BENEFITSfill

35

69

Class invariant

Postcondition

Precondition

Specified, not
implemented

Constracts for analysis

deferred class VAT inherit
TANK

feature
in_valve, out_valve : VALVE

fill
-- Fill the vat.

require
in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end
empty, is_full, is_empty, gauge, maximum,

invariant
is_full = (gauge >= 0.97 * maximum) and (gauge <= 1.03 * maximum)

end

70

A class without contracts

class
ACCOUNT

feature -- Access
balance : INTEGER

-- Balance

Minimum_balance: INTEGER = 1000
-- Minimum balance

feature {NONE } -- Deposit and withdrawal

add (sum : INTEGER)
-- Add sum to the balance.

do
balance := balance + sum

end

Secret
features

36

71

A class without contracts

feature -- Deposit and withdrawal operations

deposit (sum : INTEGER)
-- Deposit sum into the account.

do
add (sum)

end

withdraw (sum : INTEGER)
-- Withdraw sum from the account.

do
add (– sum)

end

may_withdraw (sum : INTEGER): BOOLEAN
-- Is it permitted to withdraw sum from the account?

do
Result := (balance - sum >= Minimum_balance)

end
end

72

Introducing contracts

class
ACCOUNT

create
make

feature {NONE } -- Initialization
make (initial_amount: INTEGER)

-- Set up account with initial_amount.

require
large_enough: initial_amount >= Minimum_balance

do
balance := initial_amount

ensure

balance_set: balance = initial_amount
end

37

73

Introducing contracts

feature -- Access

balance: INTEGER
-- Balance

Minimum_balance : INTEGER = 1000
-- Lowest permitted balance

feature {NONE} -- Implementation of deposit and withdrawal

add (sum : INTEGER)
-- Add sum to the balance.
do

balance := balance + sum
ensure

increased: balance = old balance + sum
end

74

Introducing contracts

feature -- Deposit and withdrawal operations

deposit (sum : INTEGER)
-- Deposit sum into the account.

require
not_too_small: sum >= 0

do
add (sum)

ensure
increased: balance = old balance + sum

end

Precondition

Postcondition

38

75

Introducing contracts

withdraw (sum : INTEGER)
-- Withdraw sum from the account.

require
not_too_small: sum >= 0
not_too_big: sum <= balance – Minimum_balance

do
add (–sum)

-- i.e. balance := balance – sum
ensure

decreased: balance = old balance - sum
end

Value of balance, captured
on entry to routine

76

The contract

Client

Supplier

(Satisfy precondition:)
Make sure sum is neither
too small nor too big

(Satisfy postcondition:)
Update account for
withdrawal of sum

OBLIGATIONS

(From postcondition:)
Get account updated with
sum withdrawn

(From precondition:)
Simpler processing: may
assume sum is within
allowable bounds

BENEFITSwithdraw

39

77

The imperative and the applicative

do
balance := balance - sum

ensure
balance = old balance - sum

PRESCRIPTIVE DESCRIPTIVE

How?
Operational
Implementation
Command
Instruction
Imperative

What?
Denotational
Specification
Query
Expression
Applicative

78

Introducing contracts

may_withdraw (sum : INTEGER): BOOLEAN
-- Is it permitted to withdraw sum from account?

do
Result := (balance - sum >= Minimum_balance)

end

invariant
not_under_minimum: balance >= Minimum_balance

end

40

79

The correctness of a class

For every creation procedure cp :

{Precp } docp {INV and Postcp }

For every exported routine r :

{INV and Prer } dor {INV and Postr }

x.f (…)

x.g (…)

x.h (…)

create x.make (…)
S1

S2

S3

S4

80

Genericity & inheritance

“Genericity versus Inheritance”, OOPSLA 1986

41

81

Extending the basic notion of class

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

82

Genericity: Ensuring type safety

How can we define consistent “container” data structures, e.g.
list of accounts, list of points?

Dubious use of a container data structure:
c : CITY ; p : PERSON
cities : LIST ...
people : LIST ...

people.extend ()
cities.extend ()

c := cities.last
c. some_city_operation

What if
wrong?

p
c

42

83

A generic class

class LIST [G] feature
extend (x : G) ...
last : G ...

end

To use the class: obtain a generic derivation, e.g.
cities : LIST [CITY]

Formal generic parameter

Actual generic parameter

84

Using generic derivations

cities : LIST [CITY]
people : LIST [PERSON]
c : CITY
p : PERSON
...

cities.extend (c)
people.extend (p)

c := cities.last
c. some_city_operation

STATIC TYPING
The compiler will reject:

 people.extend (c)

 cities.extend (p)

43

85

Static typing

Type-safe call (during execution):
A feature call x.f such that the object attached
to x has a feature corresponding to f.

[Generalizes to calls with arguments, x.f (a, b)]

Static type checker:
A program-processing tool (such as a compiler)
that guarantees, for any program it accepts, that
any call in any execution will be type-safe.

Statically typed language:
A programming language for which it is possible to
write a static type checker.

86

Using genericity

LIST [CITY]
LIST [LIST [CITY]]
…

A type is no longer exactly the same thing as a class!

(But every type remains based on a class.)

44

87

Adding two vectors

i a b c=+i a b c=+

+ =u v w

1
2

88

Genericity + inheritance 2: Constrained genericity

class VECTOR [G] feature
plus alias "+" (other : VECTOR [G]): VECTOR [G]

-- Sum of current vector and other
require

lower = other.lower
upper = other.upper

local
a, b, c: G

do
... See next ...

end
... Other features ...

end

45

89

Constrained genericity

Body of plus alias "+":

create Result.make (lower, upper)

from
i := lower

until
i > upper

loop
a := item (i)
b := other.item (i)
c := a + b -- Requires “+” operation on G!
Result.put (c, i)
i := i + 1

end

90

The solution

Declare class VECTOR as

class VECTOR [G –> NUMERIC] feature
... The rest as before ...

end

Class NUMERIC (from the Kernel Library) provides
features plus alias "+", minus alias "-"and so on.

46

91

Improving the solution

Make VECTOR itself a descendant of NUMERIC,
effecting the corresponding features:

class VECTOR [G –> NUMERIC] inherit
NUMERIC

feature
... Rest as before, including infix "+"...

end
Then it is possible to define

v : VECTOR [INTEGER]
vv : VECTOR [VECTOR [INTEGER]]
vvv : VECTOR [VECTOR [VECTOR [INTEGER]]]

92

The class invariant

Consistency constraint applicable to all instances of a
class.

Must be satisfied:
 After creation
 After execution of any feature by any client

Qualified calls only: x.f (...)

47

93

The correctness of a class

For every creation procedure cp :

{Precp } docp {INV and Postcp }

For every exported routine r :

{INV and Prer } dor {INV and Postr }

x.f (…)

x.g (…)

x.h (…)

create x.make (…)
S1

S2

S3

S4

94

Uniform Access

(A1)
list_of_deposits

list_of_withdrawals
200 100 500 1000

800 100 100

(A2)
200 300 500 1000

800 100 100

list_of_deposits
list_of_withdrawals

balance 1000

balance = deposits.total – withdrawals.total
a : ACCOUNT
....
print (a.balance)

48

95

What are contracts good for?

Writing correct software (analysis, design,
implementation, maintenance, reengineering)
Documentation (the “contract” form of a class)
Effective reuse
Controlling inheritance
Preserving the work of the best developers
Proofs

Quality assurance, testing, debugging (especially in
connection with the use of libraries)
Exception handling

96

A contract violation is not a special case

For special cases
(e.g. “if the sum is negative, report an error...”)

use standard control structures, such as if ... then ... else...

A run-time assertion violation is something else: the
manifestation of

A DEFECT (“BUG”)

49

97

Contracts and quality assurance

Precondition violation: Bug in the client.

Postcondition violation: Bug in the supplier.

Invariant violation: Bug in the supplier.

{P } A {Q }

98

Contracts: run-time effect

Compilation options (per class, in Eiffel):
 No assertion checking
 Preconditions only
 Preconditions and postconditions
 Preconditions, postconditions, class invariants
 All assertions

50

99

Contracts for testing and debugging

Contracts express implicit assumptions behind code
 A bug is a discrepancy between intent and code
 Contracts state the intent!

In EiffelStudio: select compilation option for run-time
contract monitoring at level of:

 Class
 Cluster
 System

May disable monitoring when releasing software
A revolutionary form of quality assurance

100

Lists in EiffelBase

Cursor

item

index

count1

forthback

finishstart

afterbefore

"Procchio"

51

101

Trying to insert too far right

Cursor

(Already past last element!)

count1

after

"Procchio"

102

A command and its contract

Precondition

Postcondition

52

103

Moving the cursor forward

Cursor

index

forth

count1

afterbefore

"Procchio"

104

Two queries, and command forth

53

105

Where the cursor may go

Valid cursor positions

0 index1

afterbefore

"Procchio"

count count + 1

106

From the invariant of class LIST

Valid cursor positions

54

107

Contracts and bug types

Preconditions are particularly useful to find bugs in client
code:

YOUR
APPLICATION

COMPONENT
LIBRARY

your_list.insert (y, a + b + 1)

i <= count + 1

insert (x : G ; i : INTEGER)
require

i >= 0

class LIST [G] feature

108

Contracts and quality assurance

Use run-time assertion monitoring for quality assurance,
testing, debugging.

Compilation options (reminder):

 No assertion checking
 Preconditions only
 Preconditions and postconditions
 Preconditions, postconditions, class invariants
 All assertions

55

109

Contracts and quality assurance

Contracts enable QA activities to be based on a precise description of
what they expect.

Profoundly transform the activities of testing, debugging and
maintenance.

“I believe that the use of Eiffel-like module contracts is the
most important non-practice in software world today. By that I mean
there is no other candidate practice presently being urged upon us
that has greater capacity to improve the quality of software
produced. ... This sort of contract mechanism is the sine-qua-non of
sensible software reuse. ”

Tom de Marco, IEEE Computer, 1997

110

Automatic testing

AutoTest (part of EiffelStudio):

 Test generation

 Test extraction

 Manual testing

Test cases produced
automatically from
software

Test cases produced
automatically from
failures

Test cases produced
explicitly by
developers or
testers

56

111

AutoTest: Test generation

 Input: set of classes + testing time
 Generates instances, calls routines

with automatically selected args
 Oracles are contracts:

 Direct precondition violation: skip
 Postcondition/invariant violation: bingo!

 Value selection: Random+ (use special values such as 0,
+/-1, max and min)

 Add manual tests if desired
 Any test (manual or automated) that fails becomes

part of the test suite

Ilinca Ciupa
Andreas Leitner
Manuel Oriol
Yi Wei
Arno Fiva
et al.

112

Contracts and documentation

Contract view: Simplified form of class text, retaining
interface elements only:
 Remove any non-exported (private) feature

For the exported (public) features:
 Remove body (do clause)
 Keep header comment if present
 Keep contracts: preconditions, postconditions, invariant
 Remove any contract clause that refers to a secret

feature
(This raises a problem; can you see it?)

57

113

The next step

Proofs

114

Flat, interface

Flat view of a class: reconstructed class with all the
features at the same level (immediate and inherited).
Takes renaming, redefinition etc. into account.

The flat view is an inheritance-free client-equivalent form
of the class.

Interface view: the contract view of the flat view. Full
interface documentation.

58

115

Uses of the contract &interface forms

Documentation, manuals
Design
Communication between developers
Communication between developers and managers

116

Contracts and inheritance

Issues: what happens, under inheritance, to

 Class invariants?

 Routine preconditions and postconditions?

59

117

Invariants

Invariant Inheritance rule:

 The invariant of a class automatically includes the
invariant clauses from all its parents, “and”-ed.

Accumulated result visible in flat and interface forms.

118

Contracts and inheritance

require


ensure


r
require


ensure


a1 : A

a1.r (…)
…

Correct call in C:
if a1. then

a1.r (...)
-- Here a1. holds

end

r ++

C A

D B

Client Inheritance ++ Redefinition

60

119

Assertion redeclaration rule

When redeclaring a routine, we may only:

 Keep or weaken the precondition

 Keep or strengthen the postcondition

120

A simple language rule does the trick!

Redefined version may have nothing (assertions kept by
default), or

require else new_pre
ensure then new_post

Resulting assertions are:
 original_precondition or new_pre

 original_postcondition and new_post

Assertion redeclaration rule in Eiffel

61

121

Exception handling

Two concepts:

 Failure: a routine, or other operation, is unable to
fulfill its contract.

 Exception: an undesirable event occurs during the
execution of a routine — as a result of the failure of
some operation called by the routine.

122

The original strategy

r (...) is
require

...
do

op1
op 2
...
op i
...
op n

ensure
...

end

62

123

Not going according to plan

r (...) is
require

...
do

op 1
op 2
...
op i
...
opn

ensure
...

end

Fails, triggering an exception in
r (r is recipient of exception).

124

Handling exceptions

Safe exception handling principle:

There are only two acceptable ways to react for the
recipient of an exception:

 Concede failure, and trigger an exception in caller:
“Organized Panic”

 Try again, using a different strategy (or repeating
the same strategy:

“Retrying”

(Rare third case: false alarm)

63

125

Exception mechanism

Two constructs:
 A routine may contain a rescue clause.
 A rescue clause may contain a retry instruction.

A rescue clause that does not execute a retry leads to
failure of the routine (this is the organized panic case).

126

Transmitting over an unreliable line (1)

Max_attempts: INTEGER = 100

attempt_transmission (message: STRING)
-- Transmit message in at most
-- Max_attempts attempts.

local
failures : INTEGER

do
unsafe_transmit (message)

rescue
failures := failures + 1
if failures < Max_attempts then

retry
end

end

64

127

Transmitting over an unreliable line (2)

Max_attempts: INTEGER = 100

failed: BOOLEAN

attempt_transmission (message: STRING)
-- Try to transmit message;
-- if impossible in at most Max_attempts
-- attempts, set failed to true.

local
failures: INTEGER

do
if failures < Max_attempts then

unsafe_transmit (message)
else

failed := True
end

rescue
failures := failures + 1
retry

end

128

The assertion language

Assertions in Eiffel use boolean expressions of the
programming language, plus old in postconditions

Consequences of this design decision:
 Assertions can be used for both

• Static checking, in particular proofs
• Dynamic evaluation, as part of testing

 No first- or higher-order predicate calculus
 Can use query calls (functions, attributes)

• Must guarantee absence of side effects!

65

129

Eiffel Model Library (MML)

Classes correspond to mathematical concepts:

SET [G], FUNCTION [G, H], TOTAL_FUNCTION [G, H],
RELATION [G, H], SEQUENCE [G], …

Completely applicative: no attributes (fields), no
implemented routines (all completely deferred)

Specified with contracts (unproven) reflecting
mathematical properties

Expressed entirely in Eiffel

Bernd Schoeller, Tobias Widmer, Nadia Polikarpova

130

Specifying lists

class
LINKED_LIST [G]

feature
…
remove_front

-- Remove first item.
require

not empty
do

first := first.right
ensure

end…end

first
right right right

count = old count – 1
first = old item (2)

model = old model.tail

66

131

Example MML class

class SEQUENCE [G] feature

count : NATURAL
-- Number of items

last : G
-- Last item

extended (x) : SEQUENCE [G]
-- Identical sequence except x added at end.

ensure
Result.count = count + 1
Result.last = x
Result.sub (1, count) ~ Current

mirrored : SEQUENCE [G]
-- Same items in reverse order.

ensure
Result.count = count
…

…
end

132

Principles

Very simple mathematics only
 Logic
 Set theory

67

133

EiffelBase+

In progress: library of fully specified (MML) classes,
covering fundamental data structures and algorithms, and
designed for verification: tests and proofs

Nadia Polikarpova

134

Verification As a Matter Of Course

Arbiter

AutoProof

Alias
analysis

AutoFix

Test case
generation

EVE Test
execution

Test results

Inter.
prover

Sep. logic
prover

AutoTest

Invariant
inference

Invariant
inference

Suggestions

Suggestions

68

135

Contracts as a management tool

High-level view of modules for the manager:

 Follow what’s going on without reading the code

 Enforce strict rules of cooperation between units of
the system

 Control outsourcing

136

Managerial benefits

 Library users can trust documentation

 They benefit from preconditions to validate their own code

 Component-based development possible on a solid basis

 More accurate estimates of test effort

 Black-box specification for free

 Designers who leave bequeath not only code but intent

 Common vocabulary between stakeholders: developers,
managers, customers...

69

137

Concurrency in Eiffel: SCOOP

No data races

138

Concurrency in Eiffel: SCOOP

No data races

70

139

Concurrency in Eiffel: SCOOP

No data races

140

Concurrency in Eiffel: SCOOP

No data races

71

141

Concurrency in Eiffel: SCOOP

No data races

142

Concurrency in Eiffel: SCOOP

No data races

72

143

Concurrency in Eiffel: SCOOP

No data races

144

Concurrency in Eiffel: SCOOP

No data races

73

145

Concurrency in Eiffel: SCOOP

No data races

146

Concurrency in Eiffel: SCOOP

No data races

74

147

Concurrency in Eiffel: SCOOP

No data races

148

Concurrency in Eiffel: SCOOP

No data races

75

149

Concurrency in Eiffel: SCOOP

No data races

150

Concurrency in Eiffel: SCOOP

No data races

76

151

Concurrency in Eiffel: SCOOP

No data races

152

Concurrency in Eiffel: SCOOP

No data races

77

153

Concurrency in Eiffel: SCOOP

No data races

154

Concurrency in Eiffel: SCOOP

No data races

78

155

Concurrency in Eiffel: SCOOP

No data races

156

Concurrency in Eiffel: SCOOP

No data races

79

Avoid a void

Bertrand Meyer

With major contributions by Emmanuel Stapf &
Alexander Kogtenkov (Eiffel Software)

and the ECMA TG4 (Eiffel) committee,
plus gratefully acknowledged influence of Spec#,

especially through Erik Meijer & Rustan Leino

158

Basic O-O operation

x.f (args)

… and basic issue
studied here:

(If not, call produces an exception and usually termination)

Semantics: apply the
feature f, with given
args if any, to the
object to which x is
attached

How do we guarantee
that x will always be
“attached” to an object?

80

I call it my billion-dollar
mistake. It was the invention
of the null reference in 1965.
I was designing the first
comprehensive type system
for references in an object-
oriented language (ALGOL W).
My goal was to ensure that all
use of references should be
safe, checked by the compiler.

But I couldn't resist the temptation to put in a null
reference, because it was so easy to implement. This has led
to innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and
damage in the last forty years.

159

Plan

1. Context

2. New language constructs

3. Achieving void safety

4. Current status

160

81

161

- 1 -

Context

162

Source: Patrice Chalin

44% of Eiffel preconditions clauses are of the form

x /= Void

82

163

Requirements

Minimal language extension

Statically, completely void safe

Simple for programmer, no mysterious rules

Reasonably simple for compiler

Handles genericity

Doesn’t limit expressiveness

Compatibility or minimum change for existing code

 1st-semester teachability

164

Lessons from Spec# work

“Spec# stipulates the inference of non-
[voidness] for local variables. This
inference is performed as a dataflow
analysis by the Spec# compiler.”

(Barnett, Leino, Schulte, Spec# paper)

x /= Void

83

Subject: “I had a dream”

From:"Eric Bezault" ericb@gobosoft.com
To:"ECMA TC49-TG4" Date:Thu, 4 Jun 2009 11:21

Last night I had a dream. I was programming in Eiffel 5.7. The code
was elegant. There was no need for defensive programming just by
taking full advantage of design by contract. Thanks to these contracts
the code was easy to reuse and to debug. I could hardly remember the
last time I had a call-on-void-target. It was so pleasant to program
with such a wonderful language.

This morning when I woke up I looked at the code that had been
modified to comply with void-safety. This was a rude awakening. The
code which was so elegant in my dream now looked convoluted, hard to
follow. It looks like assertions are losing all their power and defensive
programming is inviting itself again in the code. […]

165

166

- 2 -

New language
constructs

84

New constructs

1. Object test

Replaces all “downcasting” (type narrowing)
mechanisms

2. Type annotations: “attached” and “detachable”

New keywords: attached, detachable

(Plus: stable.)

167

168

The Object Test (full form)

Boolean expression:

attached {T } exp as x

Value:
True if value of exp is attached to an object of type T
or conforming

Plus: binds x to that value over scope of object test

Name (“Object-Test Local”)

Type
Expression

85

169

Object Test example

if attached {T } exp as x then

… Arbitrary instructions…

x .operation

… Other instructions …

end

Scope of x

170

Object Test variants

attached {T } exp as x

attached exp as x

attached {T } exp

attached exp
Same semantics as

exp /= Void

86

171

Scope of x

Another example of Object Test scope

from
…

until not attached exp as x loop

… Arbitrary instructions …

x.some_operation

… Other instructions …

end

172

Scope of x

Object test in contracts

my_routine

require

attached exp as x and then x.some_property

do
…

end

87

173

- 3 -

Achieving void
safety

174

A success story: static type checking

We allow

x.f (args)

only if we can guarantee that at run time:
The object attached to x, if it exists , has a feature for
f, able to handle the args

Basic ideas:
Accept it only if type of x has a feature f
Assignment x := y requires conformance (based on

inheritance)

What if x is void?

88

175

Generalizing static type checking

The goal (“void safety”): at compile time, allow

x.f (args)

only if we can guarantee that at run time:

x is not void

