Skip to content
Please note that GitHub no longer supports Internet Explorer.

We recommend upgrading to the latest Microsoft Edge, Google Chrome, or Firefox.

Learn more
A WebGL accelerated JavaScript library for training and deploying ML models.
Branch: master
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.vscode Add release notes script. (#228) Apr 27, 2018
integration_tests
scripts Update tfjs to 1.0.0 and dependent packages to 1.0.0. (#1327) Mar 5, 2019
src Update union package to 1.0.2. (#1429) Mar 20, 2019
.gitignore Dev: Ignore redundant files to propagate to npm (#379) Jul 20, 2018
.npmignore
.travis.yml
CONTRIBUTING.md Add "good places to start" to the contributing doc (#169) Apr 10, 2018
DEVELOPMENT.md
GALLERY.md Add "try not to laugh" to gallery Mar 21, 2019
ISSUE_TEMPLATE.md fix typo in ISSUE_TEMPLATE (#1142) Jan 25, 2019
LICENSE
README.md Update README.md (#1143) Jan 25, 2019
karma.conf.js Simplify and speed up the build (we don't need dist-es6 anymore) (#413) Jun 11, 2018
package.json
rollup.config.js
tsconfig.json
tslint.json Enable Travis and add a test that verifies the union build (#40) Mar 31, 2018
yarn.lock Update union package to 1.0.2. (#1429) Mar 20, 2019

README.md

Build Status

TensorFlow.js

TensorFlow.js is an open-source hardware-accelerated JavaScript library for training and deploying machine learning models.

Develop ML in the Browser
Use flexible and intuitive APIs to build models from scratch using the low-level JavaScript linear algebra library or the high-level layers API.

Run Existing models
Use TensorFlow.js model converters to run pre-existing TensorFlow models right in the browser.

Retrain Existing models
Retrain pre-existing ML models using sensor data connected to the browser, or other client-side data.

About this repo

This repository contains the logic and scripts that combine two packages:

If you care about bundle size, you can import those packages individually.

If you are looking for Node.js support, check out the TensorFlow.js Node repository.

Examples

Check out our examples repository and our tutorials.

Gallery

Be sure to check out the gallery of all projects related to TensorFlow.js.

Pre-trained models

Be sure to also check out our models repository where we host pretrained models on NPM.

Getting started

There are two main ways to get TensorFlow.js in your JavaScript project: via script tags or by installing it from NPM and using a build tool like Parcel, WebPack, or Rollup.

via Script Tag

Add the following code to an HTML file:

<html>
  <head>
    <!-- Load TensorFlow.js -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js"> </script>
  

    <!-- Place your code in the script tag below. You can also use an external .js file -->
    <script>
      // Notice there is no 'import' statement. 'tf' is available on the index-page
      // because of the script tag above.

      // Define a model for linear regression.
      const model = tf.sequential();
      model.add(tf.layers.dense({units: 1, inputShape: [1]}));

      // Prepare the model for training: Specify the loss and the optimizer.
      model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

      // Generate some synthetic data for training.
      const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
      const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);

      // Train the model using the data.
      model.fit(xs, ys).then(() => {
        // Use the model to do inference on a data point the model hasn't seen before:
        // Open the browser devtools to see the output
        model.predict(tf.tensor2d([5], [1, 1])).print();
      });
    </script>
  </head>

  <body>
  </body>
</html>

Open up that html file in your browser and the code should run!

via NPM

Add TensorFlow.js to your project using yarn or npm. Note: Because we use ES2017 syntax (such as import), this workflow assumes you are using a modern browser or a bundler/transpiler to convert your code to something older browsers understand. See our examples to see how we use Parcel to build our code. However you are free to use any build tool that you prefer.

import * as tf from '@tensorflow/tfjs';

// Define a model for linear regression.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [1]}));

// Prepare the model for training: Specify the loss and the optimizer.
model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

// Generate some synthetic data for training.
const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);

// Train the model using the data.
model.fit(xs, ys).then(() => {
  // Use the model to do inference on a data point the model hasn't seen before:
  model.predict(tf.tensor2d([5], [1, 1])).print();
});

See our tutorials, examples and documentation for more details.

Importing pre-trained models

We support porting pre-trained models from:

Find out more

TensorFlow.js is a part of the TensorFlow ecosystem. For more info:

Thanks BrowserStack for providing testing support.

You can’t perform that action at this time.