numpy
Here are 6,568 public repositories matching this topic...
-
Updated
Oct 10, 2020 - Jupyter Notebook
-
Updated
Oct 1, 2020 - Python
Improve navigation of the I/O how-to by prepending a decision tree/flowchart using an image or graphviz, as suggested by @mattip.
-
Updated
Oct 19, 2019
-
Updated
Jul 9, 2020 - Python
-
Updated
Sep 27, 2019 - Jupyter Notebook
When merging a dask dataframe, the resulting index is duplicated - seems to be because of the number of partitions. See example below:
import pandas as pd
import dask.dataframe as dd
a = dd.from_pandas(pd.DataFrame({'a': [1,2,3,4]}), npartitions=2)
b = pd.DataFrame({'a': [1,2,3,4], 'b': [2,3,4,5]})
a.merge(b, on='a').compute()Returns
| a | b |
|---|
|
-
Updated
Oct 1, 2020 - Python
-
Updated
Sep 22, 2019 - Python
-
Updated
Jul 5, 2020 - Python
-
Updated
Aug 17, 2020 - Python
-
Updated
Oct 10, 2020 - Python
-
Updated
Oct 10, 2020 - Python
-
Updated
Feb 6, 2020
Well, Gumbel Distribution is magical. Basically, given a sequence of K logits, i.e., "\log a_1, \log a_2, ..., \log a_K" and K independent gumbel random variables, i.e., "g_1, g_2, ..., g_K". We have
\argmax_i \log a_i + g_i ~ Categorical({a_i / sum(a)})
This gives you a very simple way to sampl
-
Updated
Oct 10, 2020 - C++
Support Series.median()
What happened:
xr.DataArray([1], coords=[('onecoord', [2])]).sel(onecoord=2).to_dataframe(name='name') raise an exception ValueError: no valid index for a 0-dimensional object
What you expected to happen:
the same behavior as: xr.DataArray([1], coords=[('onecoord', [2])]).to_dataframe(name='name')
Anything else we need to know?:
I see that the array after the select
-
Updated
Aug 10, 2020 - Jupyter Notebook
-
Updated
Feb 11, 2020 - Python
-
Updated
Oct 3, 2020 - Jupyter Notebook
-
Updated
Sep 11, 2020 - Python
Improve this page
Add a description, image, and links to the numpy topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the numpy topic, visit your repo's landing page and select "manage topics."
Compiling against the C++ API on macOS using GCC-9.3, and cmake seems to use a bad flag:
... -fopenmp -D_GLIBCXX_USE_CXX11_ABI= -std=c++14 ...-- note how it "blanks out" the_GLIBCXX_USE_CXX11_ABIvariable. This causes the compiler to fail in the stdlib: