ml
Machine learning is the practice of teaching a computer to learn. The concept uses pattern recognition, as well as other forms of predictive algorithms, to make judgments on incoming data. This field is closely related to artificial intelligence and computational statistics.
Here are 2,729 public repositories matching this topic...
-
Updated
Nov 13, 2020 - Jupyter Notebook
-
Updated
Nov 13, 2020 - JavaScript
Every kubeflow image should be scanned for security vulnerabilities.
It would be great to have a periodic security report.
Each of these images with vulnerability should be patched and updated.
Bug Report
These tests were run on s390x. s390x is big-endian architecture.
Failure log for helper_test.py
________________________________________________ TestHelperTensorFunctions.test_make_tensor ________________________________________________
self = <helper_test.TestHelperTensorFunctions testMethod=test_make_tensor>
def test_make_tensor(self): # type: () -> None
-
Updated
Oct 18, 2020 - Jupyter Notebook
-
Updated
Nov 21, 2018 - Shell
MLflow seems to have a length limit of 5000 when setting tags (see below).
[...]
File "/home/smay/miniconda3/envs/py38/lib/python3.8/site-packages/mlflow/utils/validation.py", line 136, in _validate_length_limit
raise MlflowException(
mlflow.exceptions.MlflowException: Tag value '[0.8562690322984875, 0.8544098885636596, 0.8544098885636596, 0.8544098885636596, 0.85440988856365As mentioned by Diego, these additions would help by simplifying the API usage for users even further and it should be pretty easy to implement for us:
@divega commented: dotnet/machinelearning-samples#617 (review)
@CESARDELATORRE, I did a deferred review. The experience seems pretty good.
1:
And I agree with you that it could be even better
-
Updated
Nov 13, 2020 - C++
-
Updated
Oct 22, 2020 - Python
-
Updated
Nov 13, 2020 - C++
-
Updated
Nov 13, 2020 - Python
-
Updated
Feb 8, 2020 - Python
-
Updated
Nov 13, 2020
All available samples code target .Net Core, Do we have samples for .Net Framework ?
-
Updated
Nov 12, 2020 - Python
-
Updated
Nov 13, 2020 - Jupyter Notebook
I have a simple regression task (using a LightGBMRegressor) where I want to penalize negative predictions more than positive ones. Is there a way to achieve this with the default regression LightGBM objectives (see https://lightgbm.readthedocs.io/en/latest/Parameters.html)? If not, is it somehow possible to define (many example for default LightGBM model) and pass a custom regression objective?
When a user wants to stream data to a date-partitioned BQ table, the way to do this is:
//noinspection ScalaStyle
class DayPartitionFunction()
extends SerializableFunction[ValueInSingleWindow[TableRow], TableDestination] {
override def apply(input: ValueInSingleWindow[TableRow]): TableDestination = {
val partition = DateTimeFormat.forPattern("yyyyMMdd").withZone(DateTimeZo-
Updated
Nov 13, 2020 - C++
Problem
Since Java 8 was introduced there is no need to use Joda as it has been replaced the native Date-Time API.
Solution
Ideally greping and replacing the text should work (mostly)
Additional context
Need to check if de/serializing will still work.
Is your feature request related to a problem? Please describe.
Support serving MXNet Gluon models in BentoML
Describe the solution you'd like
- Docs and gallery sample project demonstrating serving MXNet Gluon with
-
Updated
Nov 11, 2020 - Ruby
Yolo Model
Description
Implement a YOLO model and add it to the DJL model zoo
References
-
Updated
Nov 13, 2020 - Jupyter Notebook
Feature request: Support TFP's (L-)BFGS optimiser
TensorFlow Probability (TFP) has a native TensorFlow implementation of the (L-)BFGS optimiser. Currently, GPflow doesn't use this and relies on scipy's implementation. The problem with this, however, is that in each step of the optimisation we have to leave "graph" mode and pass in NumPy values directly to SciPy - possibly introducing a comput
- Wikipedia
- Wikipedia
Please make sure that this is a feature request. As per our GitHub Policy, we only address code/doc bugs, performance issues, feature requests and build/installation issues on GitHub. tag:feature_template
System information