Skip to content
#

feature-scaling

Here are 43 public repositories matching this topic...

Given dataset of Diamonds with features such as Cut, Carat, Clarity etc. I have used libraries such as Pandas, Numpy, Matplotlib, Seaborn to Analyse and Estimate the Price of Diamonds based on the features. Using Scikit-Learn , implemented Algorithms to increase the effective R2 score.

  • Updated Aug 22, 2018
  • Jupyter Notebook

The purpose of this project is to analyze the impact of climate change on air quality for the city of Austin and create a machine learning model that can establish a correlation between the level of air pollutants like Ozone and NO2 and the climate parameters by using regression models and null hypothesis.

  • Updated May 24, 2020
  • Jupyter Notebook

This repository contains all the Machine Learning and Deep Learning projects that I worked on, spans across the two sub domains of Artificial Intelligence i.e., Computer Vision and Text Processing as a part of Machine Learning Nano Degree program at Udacity.

  • Updated Feb 22, 2018
  • Jupyter Notebook

The task is to build a machine learning regression model will predict the number of absent hours. As Employee absenteeism is a major problem faced by every employer which eventually lead to the backlogs, piling of the work, delay in deploying the project and can have a major effect on company finances. The aim of this project is to find an issue which eventually leads toward the absence of an employee and provide a proper solution to reduce the absenteeism

  • Updated Apr 4, 2019
  • Jupyter Notebook

Tariff is a list of expenses that incur while transporting the goods from one distance to another distance. Tariff is also dependent on seasonal and non-seasonal factors also. This project is aimed at predicting the tariff ratesfor truck load by using the different machine learning algorithms like lasso regression, elastic net regression, ridge regression and linear regression. Tariffisa combination of lot ofthings and tariff rate is dependent on some ofthe factorslikeYear, Road, SeasonalImpact, Fuel Cost,Distance, Weight, Toll charge, Demand, labour cost, travel expenses etc. Using some ofthese factors and by employing the above-mentioned machine learning regression algorithms we will be trying to predict the tariff rates on the trucks. By doing this we can help the industriesto estimate the tariffratesso that they can take the necessary actions and they can make their business run inprofitable way. This model helps small- and large-scale firms to control and manage the cost on transport.

  • Updated May 25, 2020
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the feature-scaling topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the feature-scaling topic, visit your repo's landing page and select "manage topics."

Learn more

You can’t perform that action at this time.