Skip to content
#

ml

Machine learning is the practice of teaching a computer to learn. The concept uses pattern recognition, as well as other forms of predictive algorithms, to make judgments on incoming data. This field is closely related to artificial intelligence and computational statistics.

Here are 2,811 public repositories matching this topic...

JonTriebenbach
JonTriebenbach commented Sep 2, 2020

Bug Report

These tests were run on s390x. s390x is big-endian architecture.

Failure log for helper_test.py

________________________________________________ TestHelperTensorFunctions.test_make_tensor ________________________________________________

self = <helper_test.TestHelperTensorFunctions testMethod=test_make_tensor>

    def test_make_tensor(self):  # type: () -> None
    
Galileo-Galilei
Galileo-Galilei commented Nov 30, 2020

Willingness to contribute

The MLflow Community encourages bug fix contributions. Would you or another member of your organization be willing to contribute a fix for this bug to the MLflow code base?

  • Yes. I can contribute a fix for this bug independently.
  • Yes. I would be willing to contribute a fix for this bug with guidance from the MLflow community. -> I can give a try to fix
mmlspark
brunocous
brunocous commented Sep 2, 2020

I have a simple regression task (using a LightGBMRegressor) where I want to penalize negative predictions more than positive ones. Is there a way to achieve this with the default regression LightGBM objectives (see https://lightgbm.readthedocs.io/en/latest/Parameters.html)? If not, is it somehow possible to define (many example for default LightGBM model) and pass a custom regression objective?

BentoML
Wikipedia
Wikipedia
You can’t perform that action at this time.